[4] Altun, I., Simsek, H.:
Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 1 (2008), 1-8.
MR 2498882 |
Zbl 1172.54318
[6] Aydi, H., Felhi, A., Sahmim, S.:
A Suzuki fixed point theorem for generalized multivalued mappings on metric-like spaces. Glas. Mat., III. Ser. 52 (2017), 147-161 \99999DOI99999 10.3336/gm.52.1.11 .
DOI 10.3336/gm.52.1.11 |
MR 3662609 |
Zbl 06826012
[8] Bouhadjera, H., Djoudi, A.:
General common fixed point theorems for weakly compatible maps. Gen. Math. 16 (2008), 95-107.
MR 2439229 |
Zbl 1235.54025
[14] Kessy, J., Kumar, S., Kakiko, G.:
Fixed points for hybrid pair of compatible mappings in partial metric spaces. Adv. Fixed Point Theory 7 (2017), 489-499.
MR 3853027
[15] Kubiak, T.:
Fixed point theorems for contractive type multivalued mappings. Math. Jap. 30 (1985), 89-101.
MR 0828906 |
Zbl 0567.54030
[16] Matthews, S. G.: Metric Domains for Completeness: PhD Thesis. University of Warwick, Warwick (1985) .
[18] Murthy, P. P., Chang, S. S., Cho, Y. J., Sharma, B. K.:
Compatible mappings of type $(A)$ and common fixed point theorems. Kyungpook Math. J. 32 (1992), 203-216 \99999MR99999 1203935 .
MR 1203935 |
Zbl 0771.54039
[19] S. B. Nadler, Jr.:
Multi-valued contraction mappings. Pac. J. Math. 30 (1969), 475-488 \99999DOI99999 10.2140/pjm.1969.30.475 .
MR 0254828 |
Zbl 0187.45002
[20] Pathak, H. K.:
Fixed point theorems for weak compatible multi-valued and single-valued mappings. Acta Math. Hung. 67 (1995), 69-78 \99999DOI99999 10.1007/BF01874520 .
MR 1316710 |
Zbl 0821.54027
[21] Pathak, H. K., Khan, M. S.:
A comparison of various types of compatible maps and common fixed points. Indian J. Pure Appl. Math. 28 (1997), 477-485.
MR 1448037 |
Zbl 0872.54033
[22] Sessa, S.:
On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math., Nouv. Sér. 32 (1982), 149-153.
MR 0710984 |
Zbl 0523.54030
[23] Smithson, R. E.:
Fixed points for contractive multifunctions. Proc. Am. Math. Soc. 27 (1971), 192-194 \99999DOI99999 10.1090/S0002-9939-1971-0267564-4 .
MR 0267564 |
Zbl 0213.24501