Previous |  Up |  Next

Article

Keywords:
Hilbert $3$-class field tower; maximal unramified pro-$3$ extension; unramified cyclic cubic extensions; Galois action; imaginary quadratic fields; bicyclic $3$-class group; punctured capitulation types; statistics; pro-$3$ groups; finite $3$-groups; generator rank; relation rank; Schur $\sigma $-groups; low index normal subgroups; kernels of Artin transfers; abelian quotient invariants; $p$-group generation algorithm; descendant trees; antitony principle
Summary:
For any number field $K$ with non-elementary $3$-class group ${\rm Cl}_3(K)\simeq C_{3^e}\times C_3$, $e\ge 2$, the punctured capitulation type $\varkappa (K)$ of $K$ in its unramified cyclic cubic extensions $L_i$, $1\le i\le 4$, is an orbit under the action of $S_3\times S_3$. By means of Artin's reciprocity law, the arithmetical invariant $\varkappa (K)$ is translated to the punctured transfer kernel type $\varkappa (G_2)$ of the automorphism group $G_2={\rm Gal}({\rm F}_3^2(K)/K)$ of the second Hilbert $3$-class field of $K$. A classification of finite $3$-groups $G$ with low order and bicyclic commutator quotient $G/G^\prime \simeq C_{3^e}\times C_3$, $2\le e\le 6$, according to the algebraic invariant $\varkappa (G)$, admits conclusions concerning the length of the Hilbert $3$-class field tower ${\rm F}_3^\infty (K)$ of imaginary quadratic number fields $K$.
References:
[1] Arrigoni, M.: On Schur $\sigma$-groups. Math. Nachr. 192 (1998), 71-89. DOI 10.1002/mana.19981920105 | MR 1626391 | Zbl 0908.20028
[2] Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Abh. Math. Semin. Univ. Hamb. 5 (1927), 353-363 German \99999JFM99999 53.0144.04. DOI 10.1007/BF02952531 | MR 3069486
[3] Artin, E.: Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Semin. Univ. Hamb. 7 (1929), 46-51 German \99999JFM99999 55.0699.01. DOI 10.1007/BF02941159 | MR 3069515
[4] Ascione, J. A., Havas, G., Leedham-Green, C. R.: A computer aided classification of certain groups of prime power order. Bull. Aust. Math. Soc. 17 (1977), 257-274. DOI 10.1017/S0004972700010467 | MR 0470038 | Zbl 0359.20018
[5] Bembom, T.: The Capitulation Problem in Class Field Theory: Dissertation. University of Göttingen, Göttingen (2012). Zbl 1298.11104
[6] Besche, H. U., Eick, B., O'Brien, E. A.: The SmallGroups Library. Available at https://www.gap-system.org/Packages/smallgrp.html
[7] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24 (1997), 235-265. DOI 10.1006/jsco.1996.0125 | MR 1484478 | Zbl 0898.68039
[8] Bosma, W., Steel, A., Matthews, G., Fisher, D., Cannon, J., Contini, S., (eds.), B. Smith: Handbook of Magma Functions. Available at http://magma.maths.usyd.edu.au/magma/handbook/
[9] Boston, N., Bush, M. R., Hajir, F.: Heuristics for $p$-class towers of imaginary quadratic fields. Math. Ann. 368 (2017), 633-669. DOI 10.1007/s00208-016-1449-3 | MR 3651585 | Zbl 1420.11137
[10] Bush, M. R., Mayer, D. C.: 3-class field towers of exact length 3. J. Number Theory 147 (2015), 766-777. DOI 10.1016/j.jnt.2014.08.010 | MR 3276352 | Zbl 1395.11125
[11] Eick, B., Leedham-Green, C. R., Newman, M. F., O'Brien, E. A.: On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2. Int. J. Algebra Comput. 23 (2013), 1243-1288. DOI 10.1142/S0218196713500252 | MR 3096320 | Zbl 1298.20020
[12] Fieker, C.: Computing class fields via the Artin map. Math. Comput. 70 (2001), 1293-1303. DOI 10.1090/S0025-5718-00-01255-2 | MR 1826583 | Zbl 0982.11074
[13] Gamble, G., Nickel, W., O'Brien, E. A., Newman, M. F.: ANU $p$-Quotient: $p$-Quotient and $p$-Group Generation Algorithms. Available at https://www.gap-system.org/Packages/anupq.html
[14] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25 German. DOI 10.1515/crll.1982.336.1 | MR 0671319 | Zbl 0505.12016
[15] Holt, D. F., Eick, B., O'Brien, E. A.: Handbook of Computational Group Theory. Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton (2005). DOI 10.1201/9781420035216 | MR 2129747 | Zbl 1091.20001
[16] Koch, H., Venkov, B. B.: Über den $p$-Klassenkörperturm eines imaginär-quadratischen Zahlkörpers. Astérisque 24-25 (1975), 57-67 German. MR 0392928 | Zbl 0335.12021
[17] Group, MAGMA Developer: MAGMA: Computational Algebra System, Version 2.26-10. Available at http://magma.maths.usyd.edu.au/magma/ (2021).
[18] Mayer, D. C.: Principalization in complex $S_3$-fields. Numerical Mathematics and Computing Congressus Numerantium 80. Utilitas Mathematica Publishing, Winnipeg (1991), 73-87. MR 1124863 | Zbl 0733.11037
[19] Mayer, D. C.: Transfers of metabelian $p$-groups. Monatsh. Math. 166 (2012), 467-495. DOI 10.1007/s00605-010-0277-x | MR 2925150 | Zbl 1261.11071
[20] Mayer, D. C.: New number fields with known $p$-class tower. Tatra Mt. Math. Publ. 64 (2015), 21-57. DOI 10.1515/tmmp-2015-0040 | MR 3458782 | Zbl 1392.11086
[21] Mayer, D. C.: Periodic bifurcations in descendant trees of finite $p$-groups. Adv. Pure Math. 5 (2015), 162-195. DOI 10.4236/apm.2015.54020
[22] Mayer, D. C.: Artin transfer patterns on descendant trees of finite $p$-groups. Adv. Pure Math. 6 (2016), 66-104. DOI 10.4236/apm.2016.62008
[23] Mayer, D. C.: $p$-capitulation over number fields with $p$-class rank two. J. Appl. Math. Phys. 4 (2016), 1280-1293. DOI 10.4236/jamp.2016.47135
[24] Mayer, D. C.: Recent progress in determining $p$-class field towers. Gulf J. Math. 4 (2016), 74-102. DOI 10.56947/gjom.v4i4.267 | MR 3596388 | Zbl 1401.11147
[25] Mayer, D. C.: Modeling rooted in-trees by finite $p$-groups. Graph Theory: Advanced Algorithms and Applications InTechOpen, London (2018), 85-113. DOI 10.5772/intechopen.68703
[26] Mayer, D. C.: Pattern recognition via Artin transfers: Applied to $p$-class field towers. 3rd International Conference on Mathematics and its Applications (ICMA) 2020 Université Hassan II, Casablanca (2020), Available at http://www.algebra.at/DCM@ICMA2020Casablanca.pdf\kern-1pt
[27] Mayer, D. C.: BCF-groups with elevated rank distribution. Available at https://arxiv.org/abs/2110.03558 (2021), 22 pages.
[28] Mayer, D. C.: First excited state with moderate rank distribution. Available at https://arxiv.org/abs/2110.06511 (2021), 7 pages.
[29] Mayer, D. C.: New perspectives of the power-commutator-structure: Coclass trees of CF-groups and related BCF-groups. Available at https://arxiv.org/abs/2112.15215 (2021), 25 pages.
[30] Mayer, D. C.: Periodic Schur $\sigma$-groups of non-elementary bicyclic type. Available at https://arxiv.org/abs/2110.13886 (2021), 18 pages.
[31] Nebelung, B.: Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem: Inauguraldissertation. Universität zu Köln, Köln (1989), German.
[32] Newman, M. F.: Determination of groups of prime-power order. Group Theory, Canberra, 1975 Lecture Notes in Mathematics 573. Springer, Berlin (1977), 73-84. DOI 10.1007/BFb0087814 | MR 0453862 | Zbl 0519.20018
[33] O'Brien, E. A.: The $p$-group generation algorithm. J. Symb. Comput. 9 (1990), 677-698. DOI 10.1016/S0747-7171(08)80082-X | MR 1075431 | Zbl 0736.20001
[34] Scholz, A., Taussky, O.: Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: Ihre rechnerische Bestimmung und ihr Einflußauf den Klassenkörperturm. J. Reine Angew. Math. 171 (1934), 19-41 German \99999JFM99999 60.0126.02. DOI 10.1515/crll.1934.171.19 | MR 1581417
[35] Shafarevich, I. R.: Extensions with given points of ramification. Am. Math. Soc., Transl., II. Ser. 59 (1966), 128-149 translation from Publ. Math., Inst. Hautes Étud. Sci. 18 1963 71-95. DOI 10.1090/trans2/059 | MR 0176979 | Zbl 0199.09707
[36] Taussky, O.: A remark concerning Hilbert's theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438. DOI 10.1515/crll.1969.239-240.435 | MR 0279070 | Zbl 0186.09002
Partner of
EuDML logo