Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
continued fraction; Hopf link; lens space; rational surgery; Rolfsen moves
Summary:
It is clear that every rational surgery on a Hopf link in $3$-sphere is a lens space surgery. In this note we give an explicit computation which lens space is a resulting manifold. The main tool we use is the calculus of continued fractions. As a corollary, we recover the (well-known) result on the criterion for when rational surgery on a Hopf link gives the $3$-sphere.
References:
[1] Cochran, T. D., Gompf, R. E.: Applications of Donaldson's theorems to classical knot concordance, homology 3-spheres and property $P$. Topology 27 (1988), 495-512. DOI 10.1016/0040-9383(88)90028-6 | MR 0976591 | Zbl 0669.57003
[2] Gompf, R. E., Stipsicz, A. I.: 4-Manifolfs and Kirby Calculus. Graduate Studies in Mathematics 20. AMS, Providence (1999). DOI 10.1090/gsm/020 | MR 1707327 | Zbl 0933.57020
[3] Khinchin, A. Y.: Continued Fractions. The University of Chicago Press, Chicago (1964). MR 0161833 | Zbl 0117.28601
[4] Kirby, R.: A calculus for framed links in $S^3$. Invent. Math. 45 (1978), 35-56. DOI 10.1007/BF01406222 | MR 0467753 | Zbl 0377.55001
[5] Prasolov, V. V., Sossinsky, A. B.: Knots, Links, Braids and 3-Manifolds: An Introduction to the New Invariants in Low-Dimensional Topology. Translations of Mathematical Monographs 154. AMS, Providence (1997). DOI 10.1090/mmono/154 | MR 1414898 | Zbl 0864.57002
[6] Rolfsen, D.: Knots and Links. Mathematical Lecture Series 7. Publish or Perish, Berkeley (1976). MR 0515288 | Zbl 0339.55004
[7] Rolfsen, D.: Rational surgery calculus: Extension of Kirby's theorem. Pac. J. Math. 110 (1984), 377-386. DOI 10.2140/pjm.1984.110.377 | MR 0726496 | Zbl 0488.57002
Partner of
EuDML logo