Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
spectrally arbitrary sign pattern; $2n$-conjecture
Summary:
We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.
References:
[1] Bergsma, H., Meulen, K. N. Vander, Tuyl, A. Van: Potentially nilpotent patterns and the Nilpotent-Jacobian method. Linear Algebra Appl. 436 (2012), 4433-4445. DOI 10.1016/j.laa.2011.05.017 | MR 2917420 | Zbl 1244.15019
[2] Britz, T., McDonald, J. J., Olesky, D. D., Driessche, P. van den: Minimal spectrally arbitrary sign patterns. SIAM J. Matrix Anal. Appl. 26 (2004), 257-271. DOI 10.1137/S0895479803432514 | MR 2112860 | Zbl 1082.15016
[3] Brualdi, R. A., Carmona, Á., Driessche, P. van den, Kirkland, S., Stevanović, D.: Combinatorial Matrix Theory. Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Cham (2018). DOI 10.1007/978-3-319-70953-6 | MR 3791450 | Zbl 1396.05002
[4] Catral, M., Olesky, D. D., Driessche, P. van den: Allow problems concerning spectral properties of sign pattern matrices : A survey. Linear Algebra Appl. 430 (2009), 3080-3094. DOI 10.1016/j.laa.2009.01.031 | MR 2517861 | Zbl 1165.15009
[5] Cavers, M. S., Fallat, S. M.: Allow problems concerning spectral properties of patterns. Electron. J. Linear Algebra 23 (2012), 731-754. DOI 10.13001/1081-3810.1553 | MR 2966802 | Zbl 1251.15034
[6] Deaett, L., Garnett, C.: Algebraic conditions and the sparsity of spectrally arbitrary patterns. Spec. Matrices 9 (2021), 257-274. DOI 10.1515/spma-2020-0136 | MR 4249690 | Zbl 1478.15045
[7] Garnett, C., Shader, B. L.: A proof of the $T_n$ conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns. Linear Algebra Appl. 436 (2012), 4451-4458. DOI 10.1016/j.laa.2011.06.051 | MR 2917422 | Zbl 1244.15020
[8] Hall, F. J., Li, Z.: Sign pattern matrices. Handbook of Linear Algebra Chapman and Hall/CRC, New York (2018), Chapter 33-1. DOI 10.1201/9781420010572
[9] Quirk, J., Ruppert, R.: Qualitative economics and the stability of equilibrium. Rev. Econ. Stud. 32 (1965), 311-326. DOI 10.2307/2295838
Partner of
EuDML logo