Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
${\rm C}^k$ function; spline; ring of quotient; Mollifier function
Summary:
For $k\in {\mathbb N} \cup \{\infty \}$ and $U$ open in $ {\mathbb R}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb R})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb R})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb R})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb R})) = {\rm Q}({\rm C}^{k} ({\mathbb R}))$.
References:
[1] Anderson, D. F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors. Commun. Algebra 30 (2002), 4031-4047. DOI 10.1081/AGB-120005834 | MR 1922326 | Zbl 1063.13003
[2] Azarpanah, F., Ghashghaei, E., Ghoulipour, M.: $C(X)$: Something old and something new. Commun. Algebra 49 (2021), 185-206. DOI 10.1080/00927872.2020.1797070 | MR 4193623 | Zbl 1453.13008
[3] Barr, M., Burgess, W. D., Raphael, R.: Ring epimorphisms and $C(X)$. Theory Appl. Categ. 11 (2003), 283-308. MR 1988400 | Zbl 1042.54007
[4] Barr, M., Kennison, J. F., Raphael, R.: Limit closures of classes of commutative rings. Theory Appl. Categ. 30 (2015), 229-304. MR 3322157 | Zbl 1327.13084
[5] Blair, R. L., Hager, A. W.: Extensions of zero-sets and real-valued functions. Math. Z. 136 (1974), 41-52. DOI 10.1007/BF01189255 | MR 0385793 | Zbl 0264.54011
[6] Fine, N. J., Gillman, L., Lambek, J.: Rings of Quotients of Rings of Functions. McGill University Press, Montreal (1966). MR 0200747 | Zbl 0143.35704
[7] Gillman, L., Jerison, M.: Ring of Continuous Functions. Graduate Texts in Mathematics 43. Springer, New York (1976). DOI 10.1007/978-1-4615-7819-2 | MR 0407579 | Zbl 0327.46040
[8] Henriksen, M.: Rings of continuous functions from an algebraic point of view. Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. DOI 10.1007/978-94-009-2472-7_12 | MR 1094833 | Zbl 0739.46011
[9] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). DOI 10.1007/978-3-642-96750-4 | MR 0717035 | Zbl 0521.35001
[10] Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J.: Generalizations of complemented rings with applications to rings of functions. J. Algebra Appl. 8 (2009), 17-40. DOI 10.1142/S0219498809003138 | MR 2191531 | Zbl 1173.13002
[11] Lambek, J.: Lectures on Rings and Modules. Chelsea Publishing, New York (1976). MR 0419493 | Zbl 0365.16001
[12] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). DOI 10.1007/978-3-642-66066-5 | MR 0389953 | Zbl 0296.16001
Partner of
EuDML logo