Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
starlike function; Hermitian-Toeplitz determinant; logarithmic coefficient; inverse coefficient
Summary:
In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.\looseness +1
References:
[1] Ali, M. F., Thomas, D. K., Vasudevarao, A.: Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 97 (2018), 253-264. DOI 10.1017/S0004972717001174 | MR 3772655 | Zbl 1390.30018
[2] Babalola, K. O.: On $H_{3,1}$ Hankel determinants for some classes of univalent functions. Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7.
[3] Cho, N. E., Kumar, V., Kwon, O. S., Sim, Y. J.: Coefficient bounds for certain subclasses of starlike functions. J. Inequal. Appl. 2019 (2019), Article ID 276, 13 pages. DOI 10.1186/s13660-019-2231-3 | MR 4025537 | Zbl 07459304
[4] Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B.: The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$. Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375. DOI 10.1007/s40590-019-00271-1 | MR 4110457 | Zbl 1435.30044
[5] Duren, P. L.: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). MR 0708494 | Zbl 0514.30001
[6] Hayman, W. K.: On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. DOI 10.1112/plms/s3-18.1.77 | MR 0219715 | Zbl 0158.32101
[7] Janteng, A., Halim, S. A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal., Ruse 1 (2007), 619-625. MR 2370200 | Zbl 1137.30308
[8] Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J.: Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages. DOI 10.1007/s13398-020-00895-3 | MR 4123919 | Zbl 1446.30027
[9] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 105 (2022), 458-467. DOI 10.1017/S0004972721000836 | MR 4419590 | Zbl 07527748
[10] Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. (2) 45 (2022), 727-740. DOI 10.1007/s40840-021-01217-5 | MR 4380027 | Zbl 1486.30040
[11] Kowalczyk, B., Lecko, A., Sim, Y. J.: The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97 (2018), 435-445. DOI 10.1017/S0004972717001125 | MR 3802458 | Zbl 1394.30007
[12] Kumar, V.: Hermitian-Toeplitz determinants for certain classes of close-to-convex functions. Bull. Iran. Math. Soc. 48 (2022), 1093-1109. DOI 10.1007/s41980-021-00564-0 | MR 4421115 | Zbl 1490.30010
[13] Kumar, V., Cho, N. E.: Hermitian-Toeplitz determinants for functions with bounded turning. Turk. J. Math. 45 (2021), 2678-2687. DOI 10.3906/mat-2101-104 | MR 4360588 | Zbl 07579577
[14] Kumar, V., Kumar, S.: Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 55, 16 pages. DOI 10.1007/s40590-021-00362-y | MR 4266686 | Zbl 1469.30027
[15] Kumar, V., Nagpal, S., Cho, N. E.: Coefficient functionals for non-Bazilevič functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116 (2022), Article ID 44, 14 pages. DOI 10.1007/s13398-021-01185-2 | MR 4344855 | Zbl 1482.30041
[16] Kumar, V., Srivastava, R., Cho, N. E.: Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions. Miskolc Math. Notes 21 (2020), 939-952. DOI 10.18514/MMN.2020.3361 | MR 4194805 | Zbl 1474.30086
[17] Kwon, O. S., Lecko, A., Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 767-780. DOI 10.1007/s40840-018-0683-0 | MR 3935352 | Zbl 1419.30007
[18] Lecko, A., Sim, Y. J., Śmiarowska, B.: The fourth-order Hermitian Toeplitz determinant for convex functions. Anal. Math. Phys. 10 (2020), Article ID 39, 11 pages. DOI 10.1007/s13324-020-00382-3 | MR 4137139 | Zbl 1450.30028
[19] Lee, S. K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013 (2013), Article ID 281, 17 pages. DOI 10.1186/1029-242X-2013-281 | MR 3073988 | Zbl 1302.30018
[20] Libera, R. J., Złotkiewicz, E. J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 85 (1982), 225-230. DOI 10.1090/S0002-9939-1982-0652447-5 | MR 0652447 | Zbl 0464.30019
[21] Libera, R. J., Złotkiewicz, E. J.: Coefficient bounds for the inverse of a function with derivative in $P$. Proc. Am. Math. Soc. 87 (1983), 251-257. DOI 10.1090/S0002-9939-1983-0681830-8 | MR 0681830 | Zbl 0488.30010
[22] Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89 (1923), 103-121 German \99999JFM99999 49.0714.01. DOI 10.1007/BF01448091 | MR 1512136
[23] Sim, Y. J., Thomas, D. K.: On the difference of inverse coefficients of univalent functions. Symmetry 12 (2020), Article ID 2040, 14 pages. DOI 10.3390/sym12122040
[24] Thomas, D. K.: On the coefficients of strongly starlike functions. Indian J. Math. 58 (2016), 135-146. MR 3559483 | Zbl 1360.30015
Partner of
EuDML logo