[2] Babalola, K. O.: On $H_{3,1}$ Hankel determinants for some classes of univalent functions. Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7.
[4] Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B.:
The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order $\alpha$. Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375.
DOI 10.1007/s40590-019-00271-1 |
MR 4110457 |
Zbl 1435.30044
[5] Duren, P. L.:
Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983).
MR 0708494 |
Zbl 0514.30001
[7] Janteng, A., Halim, S. A., Darus, M.:
Hankel determinant for starlike and convex functions. Int. J. Math. Anal., Ruse 1 (2007), 619-625.
MR 2370200 |
Zbl 1137.30308
[8] Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J.:
Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages.
DOI 10.1007/s13398-020-00895-3 |
MR 4123919 |
Zbl 1446.30027
[22] Löwner, K.:
Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89 (1923), 103-121 German \99999JFM99999 49.0714.01.
DOI 10.1007/BF01448091 |
MR 1512136
[23] Sim, Y. J., Thomas, D. K.:
On the difference of inverse coefficients of univalent functions. Symmetry 12 (2020), Article ID 2040, 14 pages.
DOI 10.3390/sym12122040
[24] Thomas, D. K.:
On the coefficients of strongly starlike functions. Indian J. Math. 58 (2016), 135-146.
MR 3559483 |
Zbl 1360.30015