Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
order bounded weakly convergent sequence; L-weakly compact set; order almost L-weakly compact operator; L-weakly compact operator
Summary:
We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.
References:
[1] Aliprantis C. D., Burkinshaw O.: Positive Operators. Springer, Dordrecht, 2006. MR 2262133 | Zbl 1098.47001
[2] Aqzzouz B., Elbour A.: Some new results on the class of AM-compact operators. Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. DOI 10.1007/s12215-010-0020-4 | MR 2670695
[3] Aqzzouz B., Elbour A., H’michane J.: Some properties of the class of positive Dunford–Pettis operators. J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. DOI 10.1016/j.jmaa.2008.12.063 | MR 2510440
[4] Aqzzouz B., H'michane J.: The duality problem for the class of order weakly compact operators. Glasg. Math. J. 51 (2009), no. 1, 101–108. DOI 10.1017/S0017089508004576 | MR 2471680
[5] Bouras K., Lhaimer D., Moussa M.: On the class of almost L-weakly and almost M-weakly compact operators. Positivity 22 (2018), 1433–1443. DOI 10.1007/s11117-018-0586-1 | MR 3863626
[6] Dodds P. G., Fremlin D. H.: Compact operators on Banach lattices. Israel J. Math. 34 (1979), no. 4, 287–320. DOI 10.1007/BF02760610 | MR 0570888
[7] Elbour A., Afkir F., Sabiri M.: Some properties of almost L-weakly and almost M-weakly compact operators. Positivity 24 (2020), 141–149. DOI 10.1007/s11117-019-00671-7 | MR 4052686
[8] El Fahri K., Khabaoui H., H'michane J.: Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications. Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR 4412414
[9] El Fahri K., Oughajji F. Z.: On the class of almost order (L) sets and applications. Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR 4234309
[10] Lhaimer D., Bouras K., Moussa M.: On the class of order L-weakly and order M-weakly compact operators. Positivity 25 (2021), no. 4, 1569–1578. DOI 10.1007/s11117-021-00829-2 | MR 4301150
[11] Meyer-Nieberg P.: Banach Lattices. Universitext, Springer, Berlin, 1991. MR 1128093 | Zbl 0743.46015
[12] Wnuk W.: Banach lattices with properties of the Schur type---a survey. Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR 1230964
[13] Wnuk W.: Remarks on J. R. Holub's paper concerning Dunford–Pettis operators. Math. Japon. 38 (1993), no. 6, 1077–1080. MR 1250331
[14] Zabeti O.: Unbounded absolute weak convergence in Banach lattices. Positivity 22 (2018), no. 2, 501–505. DOI 10.1007/s11117-017-0524-7 | MR 3780811
[15] Zabeti O.: Unbounded continuous operators and unbounded Banach–Saks property in Banach lattices. Positivity 25 (2021), no. 5, 1989–2001. DOI 10.1007/s11117-021-00858-x | MR 4338556
Partner of
EuDML logo