[1] Abbasi, N., Golshan, H. M.:
Caristi's fixed point theorem and its equivalences in fuzzy metric spaces. Kybernetika 52 (2016), 6, 929-942.
DOI |
MR 3607855
[2] Abbas, M., Ali, B., Romaguera, S.:
Multivalued Caristi's type mappings in fuzzy metric spaces and a characterization of fuzzy metric completeness. Filomat 29 (2015), 6, 1217-1222.
DOI |
MR 3359310
[3] Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N.:
Fixed-discs in rectangular metric spaces. Symmetry 11 (2019), 2, 294.
DOI |
MR 4269014
[4] Aydi, H., Taş, N., Özgür, N. Y., Mlaiki, N.:
Fixed discs in Quasi-metric spaces. Fixed Point Theory 22 (2021), 1, 59-74.
DOI |
MR 4269014
[5] Calin, O.:
Activation Functions. In: Deep Learning Architectures. Springer Series in the Data Sciences. Springer, Cham. 2020, pp. 21-39.
MR 4240268
[7] Chaoha, P., Phon-On, A.:
A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320 (2006), 2, 983-987.
DOI |
MR 2226009
[8] George, A., Veeramani, P.:
On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 3, 395-399.
DOI |
MR 1289545 |
Zbl 0843.54014
[10] Gregori, V., Sapena, A.:
On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets Systems 125 (2002), 2, 245-252.
DOI |
MR 1880341
[11] Gregori, V., Morillas, S., Sapena, A.:
Examples of fuzzy metrics and applications. Fuzzy Sets Systems 170 (2011), 1, 95-111.
DOI |
MR 2775611 |
Zbl 1210.94016
[12] Gregori, V., Miñana, J-J., Morillas, S.:
Some questions in fuzzy metric spaces. Fuzzy Sets System 204 (2012), 71-85.
DOI |
MR 2950797 |
Zbl 1259.54001
[13] Gregori, V., Miñana, J-J.:
On fuzzy $\psi$- contractive mappings. Fuzzy Sets Systems 300 (2016), 93-101.
DOI |
MR 3226661
[14] Gopal, D., Abbas, M., Imdad, M.:
$\psi$-weak contractions in fuzzy metric spaces. Iranian J Fuzzy Syst. 5 (2011), 5, 141-148.
MR 2907800
[15] Gopal, D., Vetro, C.:
Some new fixed point theorems in fuzzy metric spaces. Iranian J. Fuzzy Syst. 11 (2014), 3, 95-107.
MR 3237493
[16] Gopal, D., Martínez-Moreno, J.:
Suzuki type fuzzy $\mathcal{Z}$-contractive mappings and fixed points in fuzzy metric spaces. Kybernetika 7 (2021), 5, 908-921.
DOI |
MR 4376867
[17] Kramosil, I., Michalek, J.:
Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344.
MR 0410633
[18] Miheţ, D.:
Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Systems 159 (2008), 6, 739-744.
DOI |
MR 2410532
[19] Mohamad, S.:
Global exponential stability in DCNNs with distributed delays and unbounded activations. J. Comput. Appl. Math. 205 (2007), 1, 161-173.
DOI |
MR 2324832
[20] Özgür, N. Y., Taş, N., Çelik, U.:
New fixed-circle results on $S$-metric spaces. Bull. Math. Anal. Appl. 9 (2017), 2, 10-23.
MR 3672224
[21] Özgür, N. Y., Taş, N.:
Some fixed-circle theorems and discontinuity at fixed circle. In: AIP Conference Proc., AIP Publishing LLC 2018 (Vol. 1926, No. 1, p. 020048.)
DOI
[22] Özgür, N. Y., Taş, N.:
Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. 42 (2019), 4, 1433-1449.
DOI |
MR 3963837
[23] Özgür, N., Taş, N.:
Geometric properties of fixed points and simulation functions. arXiv:2102.05417 DOI:10.48550/arXiv.2102.05417
DOI 10.48550/arXiv.2102.05417
[24] Özgür, N.:
Fixed-disc results via simulation functions. Turkish J. Math. 43 (2019), 6, 2794-2805.
DOI |
MR 4038378
[25] Özdemir, N., B.İskender, B., Özgür, N. Y.:
Complex valued neural network with Möbius activation function. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 12, 4698-4703.
DOI |
MR 2820859
[26] Pomdee, K., Sunyeekhan, G., Hirunmasuwan, P.:
The product of virtually nonexpansive maps and their fixed points. In: Journal of Physics, Conference Series, IOP Publishing, 2018 (Vol. 1132, No. 1, p.\.012025).
DOI
[28] Sharma, S., Sharma, S., Athaiya, A.: Activation functions in neural networks. Towards Data Sci. 6 (2017), 12, 310-316.
[29] Shukla, S., Gopal, D., Sintunavarat, W.:
A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems 350 (2018), 85-94.
DOI |
MR 3852589
[30] Tomar, A., Joshi, M., Padaliya, S. K.:
Fixed point to fixed circle and activation function in partial metric space. J. Appl. Anal. 28 (2022), 1, 57-66.
DOI |
MR 4431325
[31] Wang, Z., Guo, Z., Huang, L., Liu, X.:
Dynamical behaviour of complex-valued Hopfield neural networks with discontinuous activation functions. Neural Process Lett. 45 (2017), 3, 1039-1061.
DOI
[32] Zhang, Y., Wang, Q. G.:
Stationary oscillation for high-order Hopfield neural networks with time delays and impulses. J. Comput. Appl. Math. 231 (2009), 1, 473-477.
DOI |
MR 2532684