Previous |  Up |  Next

Article

Keywords:
cross diffusion; weak-strong uniqueness; relative entropy
Summary:
Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
References:
[1] Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341. DOI 10.1007/BF01176474 | Zbl 0497.35049
[2] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.
[3] Bénilan, Ph., Crandall, M.G., Pierre, M.: Solutions of the porous medium equation in ${\mathbb{R}}^ N$ under optimal conditions on initial values. Indiana Univ. Math. J. 33 (1984), 51–87. DOI 10.1512/iumj.1984.33.33003
[4] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. DOI 10.1007/978-1-4614-5975-0 | MR 2986590
[5] Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.: Weak-strong uniqueness for measure-valued solutions. Comm. Math. Phys. 305 (2011), no. 2, 351–361. DOI 10.1007/s00220-011-1267-0 | MR 2805464
[6] Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models. Arch. Ration. Mech. Anal. 233 (2019), no. 3, 975–1025. DOI 10.1007/s00205-019-01373-w | MR 3961293
[7] Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $u_t- \Delta \varphi (u)=0$. J. Math. Pures Appl. (9) 58 (1979), 153–163.
[8] Chen, X., Jüngel, A.: Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems. Math. Models Methods Appl. Sci. 29 (2019), no. 2, 237–270. DOI 10.1142/S0218202519500088 | MR 3917403
[9] Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229 (2018), no. 1, 1–52. DOI 10.1007/s00205-017-1212-2 | MR 3799089
[10] Escher, J., Matioc, A.-V., Matioc, B.-V.: Modelling and analysis of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012), 267–277. DOI 10.1007/s00021-011-0053-2 | MR 2925108
[11] Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14 (2012), no. 4, 717–730. DOI 10.1007/s00021-011-0091-9 | MR 2992037
[12] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), no. 2, 683–706. DOI 10.1007/s00205-011-0490-3 | MR 2909912
[13] Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations. Nonlinear Anal. 159 (2017), 181–207. MR 3659829
[14] Fischer, J., Hensel, S.: Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension. Arch. Ration. Mech. Anal. 236 (2020), no. 2, 967–1087. DOI 10.1007/s00205-019-01486-2 | MR 4072686
[15] Giesselmann, J., Lattanzio, C., Tzavaras, A.E.: Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. DOI 10.1007/s00205-016-1063-2 | MR 3594360
[16] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28 (2015), no. 11, 3873–3890. DOI 10.1088/0951-7715/28/11/3873 | MR 3424896
[17] Hopf, K.: Weak-strong uniqueness for energy-reaction-diffusion systems. Math. Models Methods Appl. Sci. 32 (2022), 1015–1069. DOI 10.1142/S0218202522500233 | MR 4430363
[18] Huo, X., Jüngel, A., Tzavaras, A.E.: Weak-strong uniqueness for Maxwell-Stefan systems. SIAM J. Math. Anal. 54 (2022), no. 3, 3215–3252. DOI 10.1137/21M145210X | MR 4429417
[19] Jüngel, A., Portisch, S., Zurek, A.: Nonlocal cross-diffusion systems for multi-species populations and networks. Nonlinear Anal. 219 (2022), Paper No. 112800, 1–26. DOI 10.1016/j.na.2022.112800 | MR 4379345
[20] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to a class of degenerate cross-diffusion systems. arXiv: 2201.06479.
[21] Laurençot, Ph., Matioc, B.-V.: The porous medium equation as a singular limit of the thin film Muskat problem. arXiv:2108.09032, to appear in Asymptot. Anal.
[22] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals. Trans. Amer. Math. Soc. 375 (2022), no. 8, 5963–5986. MR 4469243
[23] Matioc, B.-V., Walker, Ch.: On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. Monatsh. Math. 191 (2020), no. 3, 615–634. DOI 10.1007/s00605-019-01352-z | MR 4064570
[24] Otto, F.: $L^ 1$-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations 131 (1996), no. 1, 20–38. DOI 10.1006/jdeq.1996.0155
[25] Pierre, M.: Uniqueness of the solutions of $u_t-\Delta (\phi (u)) = 0$ with initial datum a measure. Nonlinear Anal. 6 (1982), 175–187.
[26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. Zbl 0387.46033
[27] Vázquez, J.L.: The Porous Medium Equation. Clarendon Press, Oxford, 2007. MR 2286292
Partner of
EuDML logo