[2] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.
[3] Bénilan, Ph., Crandall, M.G., Pierre, M.:
Solutions of the porous medium equation in ${\mathbb{R}}^ N$ under optimal conditions on initial values. Indiana Univ. Math. J. 33 (1984), 51–87.
DOI 10.1512/iumj.1984.33.33003
[4] Boyer, F., Fabrie, P.:
Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183, Springer, New York, 2013.
DOI 10.1007/978-1-4614-5975-0 |
MR 2986590
[5] Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.:
Weak-strong uniqueness for measure-valued solutions. Comm. Math. Phys. 305 (2011), no. 2, 351–361.
DOI 10.1007/s00220-011-1267-0 |
MR 2805464
[6] Bresch, D., Gisclon, M., Lacroix-Violet, I.:
On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models. Arch. Ration. Mech. Anal. 233 (2019), no. 3, 975–1025.
DOI 10.1007/s00205-019-01373-w |
MR 3961293
[7] Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $u_t- \Delta \varphi (u)=0$. J. Math. Pures Appl. (9) 58 (1979), 153–163.
[8] Chen, X., Jüngel, A.:
Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems. Math. Models Methods Appl. Sci. 29 (2019), no. 2, 237–270.
DOI 10.1142/S0218202519500088 |
MR 3917403
[9] Christoforou, C., Tzavaras, A.E.:
Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229 (2018), no. 1, 1–52.
DOI 10.1007/s00205-017-1212-2 |
MR 3799089
[10] Escher, J., Matioc, A.-V., Matioc, B.-V.:
Modelling and analysis of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012), 267–277.
DOI 10.1007/s00021-011-0053-2 |
MR 2925108
[11] Feireisl, E., Jin, B.J., Novotný, A.:
Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14 (2012), no. 4, 717–730.
DOI 10.1007/s00021-011-0091-9 |
MR 2992037
[12] Feireisl, E., Novotný, A.:
Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), no. 2, 683–706.
DOI 10.1007/s00205-011-0490-3 |
MR 2909912
[13] Fischer, J.:
Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations. Nonlinear Anal. 159 (2017), 181–207.
MR 3659829
[14] Fischer, J., Hensel, S.:
Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension. Arch. Ration. Mech. Anal. 236 (2020), no. 2, 967–1087.
DOI 10.1007/s00205-019-01486-2 |
MR 4072686
[15] Giesselmann, J., Lattanzio, C., Tzavaras, A.E.:
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484.
DOI 10.1007/s00205-016-1063-2 |
MR 3594360
[16] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.:
Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28 (2015), no. 11, 3873–3890.
DOI 10.1088/0951-7715/28/11/3873 |
MR 3424896
[18] Huo, X., Jüngel, A., Tzavaras, A.E.:
Weak-strong uniqueness for Maxwell-Stefan systems. SIAM J. Math. Anal. 54 (2022), no. 3, 3215–3252.
DOI 10.1137/21M145210X |
MR 4429417
[19] Jüngel, A., Portisch, S., Zurek, A.:
Nonlocal cross-diffusion systems for multi-species populations and networks. Nonlinear Anal. 219 (2022), Paper No. 112800, 1–26.
DOI 10.1016/j.na.2022.112800 |
MR 4379345
[20] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to a class of degenerate cross-diffusion systems. arXiv: 2201.06479.
[21] Laurençot, Ph., Matioc, B.-V.: The porous medium equation as a singular limit of the thin film Muskat problem. arXiv:2108.09032, to appear in Asymptot. Anal.
[22] Laurençot, Ph., Matioc, B.-V.:
Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals. Trans. Amer. Math. Soc. 375 (2022), no. 8, 5963–5986.
MR 4469243
[23] Matioc, B.-V., Walker, Ch.:
On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. Monatsh. Math. 191 (2020), no. 3, 615–634.
DOI 10.1007/s00605-019-01352-z |
MR 4064570
[24] Otto, F.:
$L^ 1$-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations 131 (1996), no. 1, 20–38.
DOI 10.1006/jdeq.1996.0155
[25] Pierre, M.: Uniqueness of the solutions of $u_t-\Delta (\phi (u)) = 0$ with initial datum a measure. Nonlinear Anal. 6 (1982), 175–187.
[26] Triebel, H.:
Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978.
Zbl 0387.46033
[27] Vázquez, J.L.:
The Porous Medium Equation. Clarendon Press, Oxford, 2007.
MR 2286292