Previous |  Up |  Next

Article

Keywords:
chemotaxis; quasilinear; attraction-repulsion; stabilization
Summary:
This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.
References:
[1] Chiyo, Y.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case. Adv. Math. Sci. Appl. 31 (2) (2022), 327–341. MR 4521442
[2] Chiyo, Y., Marras, M., Tanaka, Y., Yokota, T.: Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation. Nonlinear Anal. 212 (2021), 14 pp., Paper No. 112550. MR 4299101
[3] Chiyo, Y., Yokota, T.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: balanced case. Matematiche (Catania), to appear.
[4] Chiyo, Y., Yokota, T.: Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic elliptic attraction-repulsion chemotaxis system. Z. Angew. Math. Phys. 73 (2) (2022), 27 pp., Paper No. 61. DOI 10.1007/s00033-022-01695-y | MR 4386024
[5] Fujie, K., Suzuki, T.: Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case. Adv. Math. Sci. Appl. 28 (2019), 1–9. MR 4416882
[6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 2112–232. MR 4043690
[7] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence, 1968.
[8] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. S 13 (2) (2020), 233–255. MR 4043691
[9] Lankeit, J.: Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 504 (2) (2021), 16 pp., Paper No. 125409. DOI 10.1016/j.jmaa.2021.125409 | MR 4270582
[10] Li, Y., Lin, K., Mu, C.: Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system. Electron. J. Differential Equations 2015 (146) (2015), 13 pp. MR 3358518
[11] Lin, K., Mu, C., Wang, L.: Large-time behavior of an attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 426 (1) (2015), 105–124. DOI 10.1016/j.jmaa.2014.12.052 | MR 3306365
[12] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogliner, A.: Chemotactic signalling, microglia, and Alzheimer’s disease senile plague: Is there a connection?. Bull. Math. Biol. 65 (2003), 673–730. DOI 10.1016/S0092-8240(03)00030-2
[13] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23 (2013), 1–36. DOI 10.1142/S0218202512500443 | MR 2997466
[14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations 252 (1) (2012), 692–715. DOI 10.1016/j.jde.2011.08.019 | MR 2852223
[15] Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities. J. Differential Equations 266 (12) (2019), 8034–8066. DOI 10.1016/j.jde.2018.12.019 | MR 3944248
Partner of
EuDML logo