Previous |  Up |  Next

Article

Keywords:
neutral functional differential equations; energy Lyapunov functional; asymptotic stability; water hammer
Summary:
It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability is “fragile” i.e. it holds only for a rational ratio of the two delays, with odd numerator and denominator also. Otherwise this stability is critical (non-asymptotic and displaying an oscillatory mode).
References:
[1] Abolinia, V.E., Myshkis, A.D.: Mixed problem for an almost linear hyperbolic system in the plane. Mat. Sb. (N.S.) 50(92) (4) (1960), 423–442, (Russian).
[2] Aronovich, G.V., Kartvelishvili, N.A., Lyubimtsev, Ya.K.: Water hammer and surge tanks. Nauka, Moscow USSR, 1968, (Russian).
[3] Cooke, K.L.: A linear mixed problem with derivative boundary conditions. Seminar on Differential Equations and Dynamical Systems (III), University of Maryland, College Park, 1970.
[4] Escande, L., Dat, J., Piquemal, J.: Stabilité d’une chambre d’équilibre placée à la jonction de deux galeries alimentées par des lacs situés à la même cote. C.R. Acad. Sci. Paris 261 (1965), 2579–2581.
[5] Halanay, A., Popescu, M.: Une propriété arithmétique dans l’analyse du comportement d’un systéme hydraulique comprenant une chambre d’équilibre avec étranglement. C.R. Acad. Sci. Paris Série II 305 (15) (1987), 1227–1230.
[6] Hale, J.K.: Dynamical systems and stability. J. Math. Anal. Appl. 26 (1969), 39–69. DOI 10.1016/0022-247X(69)90175-9
[7] Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. vol. 99, Applied Mathematical Sciences, Springer-Verlag, New York, 1993. Zbl 0787.34002
[8] Haraux, A.: Systémes dynamiques dissipatifs et applications. Recherches en Mathématiques appliquées, vol. 17, Masson, Paris, 1991.
[9] Răsvan, V.: Augmented Validation and a Stabilization Approach for Systems with Propagation. Systems Theory: Perspectives, Applications and Developments, Nova Science Publishers, New York, 2014.
[10] Răsvan, V.: Critical cases in neutral functional differential equations, arising from hydraulic engineering. Opuscula Math. 42 (4) (2022), 605–633. DOI 10.7494/OpMath.2022.42.4.605 | MR 4449109
[11] Răsvan, V.: Stability results for the functional differential equations associated to water hammer in hydraulics. Electron. J. Qual. Theory Differ. Equ. 19 (2022), 1–32. DOI 10.14232/ejqtde.2022.1.19 | MR 4417616
[12] Saperstone, S.H.: Semidynamical Systems in Infinite Dimensional Spaces. vol. 37, Applied Mathematical Sciences, Springer, New York-Heidelberg-Berlin, 1981.
Partner of
EuDML logo