[1] Anderson, D.R., Onitsuka, M.:
Hyers-Ulam stability for differential systems with $2\times 2$ constant coefficient matrix. Results Math. 77 (2022), 23, Paper No. 136.
DOI 10.1007/s00025-022-01671-y |
MR 4420286
[2] Benterki, R., Jimenez, J., Llibre, J.:
Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibria separated by reducible cubics. Electron. J. Qual. Theory Differ. Equ. 2021 (2021), 38 pp., Paper No. 69.
MR 4389338
[3] Boukoucha, R.:
Limit cycles explicitly given for a class of a differential systems. Nonlinear Stud. 28 (2) (2021), 375–387.
MR 4328117
[4] Castro, L.P., Simões, A.M.:
A Hyers-Ulam stability analysis for classes of Bessel equations. Filomat 35 (13) (2021), 4391–4403.
DOI 10.2298/FIL2113391C |
MR 4365541
[5] Deepa, S., Bowmiya, S., Ganesh, A., Govindan, V., Park, C., Lee, J.:
Mahgoub transform and Hyers-Ulam stability of n-th order linear differential equations. AIMS Math. 7 (4) (2022), 4992–5014.
DOI 10.3934/math.2022278 |
MR 4357984
[6] Devi, A., Kumar, A.:
Hyers-Ulam stability and existence of solution for hybrid fractional differential equation with $p$-Laplacian operator. Chaos Solitons Fractals 156 (2022), 8 pp., Paper No. 111859.
MR 4379223
[8] Fečkan, M., Li, Q., Wang, J.:
Existence and Ulam-Hyers stability of positive solutions for a nonlinear model for the Antarctic Circumpolar Current. Monatsh. Math. 197 (3) (2022), 419–434.
DOI 10.1007/s00605-021-01618-5 |
MR 4389128
[9] Galias, Z., Tucker, W.:
The Songling system has exactly four limit cycles. Appl. Math. Comput. 415 (2022), 8 pp., Paper No. 126691.
MR 4327335
[10] Gong, S., Han, M.:
An estimate of the number of limit cycles bifurcating from a planar integrable system. Bull. Sci. Math. 176 (2022), 39 pp., Paper No. 103118.
MR 4395271
[11] Huang, J., Li, J.:
On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones. Nonlinear Anal. Real World Appl. 66 (2022), 17 pp., Paper No. 103551.
MR 4389045
[12] Jung, S.-M., Ponmana Selvan, A., Murali, R.:
Mahgoub transform and Hyers–Ulam stability of first-order linear differential equations. J. Math. Inequal. 15 (3) (2021), 1201–1218.
DOI 10.7153/jmi-2021-15-80 |
MR 4364669
[13] Kelley, W.G., Peterson, A.C.:
The Theory of Differential Equations: Classical and Qualitative. Springer, New York, 2010, Second Edition, Universitext.
MR 2640364
[14] Li, J., Han, M.:
Planar integrable nonlinear oscillators having a stable limit cycle. J. Appl. Anal. Comput. 12 (2) (2022), 862–867.
MR 4398697
[16] Onitsuka, M.: Approximate solutions of generalized logistic equation. submitted.
[17] Onitsuka, M.:
Conditional Ulam stability and its application to the logistic model. Appl. Math. Lett. 122 (2021), 7 pp., Paper No. 107565.
MR 4296927
[18] Onitsuka, M.:
Conditional Ulam stability and its application to von Bertalanffy growth model. Math. Biosci. Eng. 19 (3) (2022), 2819–2834.
DOI 10.3934/mbe.2022129 |
MR 4364436
[19] Onitsuka, M., El-Fassi, Iz.:
On approximate solutions of a class of Clairaut’s equations. Appl. Math. Comput. 428 (2022), 13 pp., Paper No. 127205.
DOI 10.1016/j.amc.2022.127205 |
MR 4421006
[20] Sugie, J., Ishibashi, K.:
Limit cycles of a class of Liénard systems derived from state-dependent impulses. Nonlinear Anal. Hybrid Syst. 45 (2022), 16 pp., Paper No. 101188.
MR 4399231