Previous |  Up |  Next

Article

Keywords:
effect algebra; $L$-fuzzy ideal degree; cut set; $(L,L)$-fuzzy convexity
Summary:
In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak{D}_{ei}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak{D}_{ei}(A)=\top,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_{\beta}$-nested sets and $L_{\alpha}$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.
References:
[1] Davey, B. A., Priestley, H. A.: Introduction to Lattice and Order. Cambridge University Press, Cambridge 2002. MR 1902334
[2] Dong, Y. Y., Li, J.: Fuzzy convex structures and prime fuzzy ideal space on residuated lattices. J. Nonlinear Convex Analysis 21 (2020), 12, 2725-2735. MR 4194714
[3] Dvurečenskij, A., Pulmannová, S.: New trends in Quantum Structures. Springer-Science Business Media, B.V. 2000. MR 1861369
[4] Dwinger, P.: Characterizations of the complete homomorphic images of a completely distributive lattice I. Mathematics 85 (1982), 4, 403-414. DOI  | MR 0683528
[5] Foulis, D., Bennett, M. K.: Effect algebras and unsharp quantum logice. Foundat. Physics 24 (1994), 1331-1352. DOI  | MR 1304942
[6] al., G. Gierz et: Continuous lattices and domains, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 2003. MR 1975381
[7] Goguan, J. A.: $L$-fuzzy sets. J. Math. Analysis Appl. 18 (1967), 145-174. DOI  | MR 0224391
[8] Höhle, U., Šostak, A. P.: Axiomatic foundations of fixed basis fuzzy topology. Math. Fuzzy Sets 3 (1999), 123-272. DOI  | MR 1788903
[9] Li, J., Shi, F.-G.: $L$-fuzzy convexity induced by $L$-convex fuzzy sublattice degree. Iranian J. Fuzzy Systems 14 (2017), 5, 83-102. MR 3751405
[10] Liu, D. L.: Fuzzy filters and fuzzy ideals in pseudo-effect algebras. Computer Engrg. Appl. (2011), 50-52. DOI  | MR 2933851
[11] Liu, D. L., Wang, G. J.: Fuzzy filters in effect algebras. Fuzzy Systems Math. 23 (2009), 6-17. MR 2547361
[12] Luo, C. Z.: Fuzzy sets and nested sets. Fuzzy Math. 4 (1983), 113-126. MR 0743512
[13] Ma, Z. H.: Note on ideals of effect algebras. Inform. Sci. 179 (2009), 505-507. DOI  | MR 2490189
[14] Malik, D. S., Mordeson, J. N.: Fuzzy direct sums of fuzzy rings. Fuzzy Sets Systems 45 (1992), 83-91. DOI  | MR 1148455
[15] Mehmood, F., Shi, F.-G.: M-hazy vector spaces over M-hazy field. Mathematics 9 (2021), 1118. DOI 
[16] Mehmood, F., Shi, F.-G., Hayat, K.: A new approach to the fuzzification of rings. J. Nonlinear Convex Analysis 21 (12) (2020), 2637-2646. MR 4194706
[17] Močkoř, J.: $\alpha$-cuts and models of fuzzy logic. Int. J. General Systems 42 (2013), 67-78. DOI  | MR 2990334
[18] Öztürk, M. A., Jun, Y. B., Yazarli, H.: A new view of fuzzy gamma rings. Hacettepe J. Math. Statist. 39 (2010), 3, 365-378. MR 2732632
[19] Pang, B.: Convergence structures in $M$-fuzzifying convex spaces. Quaest. Math. 43 (2020), 11, 1541-1561. DOI  | MR 4181551
[20] Pang, B.: $L$-fuzzifying convex structures as $L$-convex structures. J. Nonlinear Convex Anal. 21 (2020), 12, 2831-2841. MR 4194723
[21] Pang, B.: Bases and subbases in $(L,M)$-fuzzy convex spaces. Computat. Appl. Math. (2020), 39-41. DOI  | MR 4059965
[22] Pang, B., Shi, F.-G.: Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces. Quaest. Math. 41 (2018), 8, 1021-1043. DOI  | MR 3885942
[23] Pei, D., Fan, T.: On generalized fuzzy rough sets. Int. J. General Systems 38 (2009), 3, 255-271. DOI  | MR 2527845
[24] Rosa, M. V.: On fuzzy topology, fuzzy convexity spaces and fuzzy local convexity. Fuzzy Sets Systems 62 (1994), 97-100. DOI  | MR 1259888
[25] Shen, C., Shi, F.-G.: $L$-convex systems and the categorical isomorphism to Scott-hull operators. Iranian J. Fuzzy Systems 15 (2018), 2, 23-40. MR 3840019
[26] Shi, F.-G.: Theory of $L_{\beta}$-nested set and $L_{\alpha}$-nested sets and applications. Fuzzy Systems Math. (1995), 65-72. MR 1384670
[27] Shi, F.-G., Xin, X.: $L$-fuzzy subgroup degrees and $L$-fuzzy normal subgroup degrees. J. Advanced Res. Pure Math. 3 (2011), 4, 92-108. DOI  | MR 2859291
[28] Shi, F.-G., Xiu, Z. Y.: A new approach to the fuzzification of convex structures. J. Appl. Math. 3 (2014), 1-12. DOI  | MR 3259199
[29] Shi, F.-G., Xiu, Z. Y.: $(L,M)$-fuzzy convex structures. J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. DOI  | MR 3680307
[30] Shi, Y., Huang, H. L.: A characterization of strong $Q$-concave spaces. J. Nonlinear Convex Anal. 21 (2020), 12, 2771-2781. MR 4194718
[31] Vel, M. L. J. van de: Theory of Vonvex Structures. North Holland, N. Y. 1993. MR 1234493
[32] Wang, G. J.: Theory of topological molecular lattices. Fuzzy Sets Systems 47 (1992), 351-376. DOI  | MR 1166284
[33] Wang, K., Shi, F.-G.: $M$-fuzzifying topological convex spaces. Iranian J. Fuzzy Systems 15, (2018), 6, 159-174. MR 3931764
[34] Wei, X. W., Pang, B., Mi, J. S.: Axiomatic characterizations of $L$-valued rough sets using a single axiom. Inform, Sci. 580 (2021), 283-310. DOI  | MR 4308034
[35] Wei, X. W., Pang, B., Mi, J. S.: Axiomatic characterizations of $L$-fuzzy rough sets by $L$-fuzzy unions and $L$-fuzzy intersections. Int. J. General Systems 51 (2022), 3, 277-312. DOI  | MR 4407612
[36] Wei, X. W., Wang, B.: Fuzzy (restricted) hull operators and fuzzy convex structures on $L$-sets. J. Nonlinear Convex Anal. 21 (2020), 12, 2805-2815. MR 4194721
[37] Wen, Y. F., Zhong, Y., Shi, F.-G.: $L$-fuzzy convexity induced by $L$-convex degree on vector spaces. J. Intell. Fuzzy Systems 33 (2017), 4031-4041. DOI  | MR 3751405
[38] Williams, D. R. P., Latha, K. B., Chandrasekeran, E.: Fuzzy bi-$\Gamma$-ideals in $\Gamma$-semigroups. Hacettepe J. Math. Statist. 38 (2009), 1, 1-15. MR 2530686
[39] Wu, J.: Ideals, filters and supports in pseudo-effect algebras. Int. J. Theoret. Physics 43 (2004), 349-358. DOI  | MR 2080537
[40] Yang, H., Li, E. Q.: A new approach to interval operators in $L$-convex spaces. J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. MR 4194712
[41] Zhang, Q. W.: Ideals and filters in dual effect algebras. Hennan Sci. 34 (2016), 8, 1211-1214. DOI 
[42] Zhang, Q. W.: Note on ideals in effect algebras. Hennan Sci. 35 (2017), 10, 1567-1569. DOI  | MR 2490189
[43] Zhao, F. F., Huang, H. L.: The relationships among $L$-ordered hull operators, restricted $L$-hull operators and strong $L$-fuzzy convex structures. J. Nonlinear Convex Anal. 21 (2020), 12, 2817-2829. MR 4194722
[44] Zhong, Y., Shi, F.-G.: Characterizations of $(L,M)$-fuzzy topological degrees. Iranian J. Fuzzy Syst. 15 (2018), 4, 129-149. MR 3823001
[45] Zhou, X. W., Shi, F.-G.: Some new results on six types mappings between $L$-convex spaces. Filomat. 34 (2020), 4767-4781. DOI  | MR 4290887
Partner of
EuDML logo