[1] Ahrens, L.: On Using Shadow Prices for the Asymptotic Analysis of Portfolio Optimization under Proportional Transaction Costs. PhD. Thesis, Kiel, 2015.
[2] Akian, M., Menaldi, J. L., Sulem, A.:
On an investment-consumption model with transaction costs. J. Control Optim. 34 (1996), 1, 329-364.
DOI |
MR 1372917 |
Zbl 1035.91505
[3] Akian, M., Sulem, A., Taksar, M. I.:
Dynamic optimization of long-term growth rate for a portfolio with transaction costs and logarithmic utility. Math. Finance 11 (2001), 2, 53-188.
DOI |
MR 1822775
[4] Algoet, P. H., Cover, T. M.:
Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16 (1988), 2, 876-898.
DOI |
MR 0929084
[5] Bell, R. M., Cover, T. M.:
Competitive optimality of logarithmic investment. Math. Oper. Res. 5 (1980), 2, 161-166.
DOI |
MR 0571810 |
Zbl 0442.90120
[6] Bell, R., Cover, T. M.:
Game-theoretic optimal portfolios. Management Sci. 34 (1988), 6, 724-733.
DOI |
MR 0943277 |
Zbl 0649.90014
[7] Bichuch, M., Sircar, R.:
Optimal investment with transaction costs and stochastic volatility Part II: Finite horizon. SIAM J. Control Optim. 57 (2019), 1, 437-467.
DOI |
MR 3904415
[8] Breiman, L.:
Optimal gambling system for flavorable games. In: Proc. 4-th Berkeley Symposium on Mathematical Statistics and Probability 1 (1961), pp. 65-78.
MR 0135630
[9] Browne, S., Whitt, W.:
Portfolio choice and the Bayesian Kelly criterion. Adv. in Appl. Probab. 28 (1996), 4, 1145-1176.
DOI |
MR 1418250 |
Zbl 0867.90010
[10] Cai, J., Rosenbaum, M., Tankov, P.:
Asymptotic lower bounds for optimal tracking: A linear programming approach. Ann. Appl. Probab. 27 (2017), 4, 2455-2514.
DOI |
MR 3693531
[11] Constantinides, G. M.:
Capital market equilibrium with transaction costs. J. Political Economy 94 (1986), 4, 842-862.
DOI
[12] Davis, M. H. A., Norman, A. R.:
Portfolio Selection with Transaction Costs. Math. Oper. Res. 15 (1990), 4, 676-713.
DOI |
MR 1080472
[13] Dostál, P.:
Optimal trading strategies with transaction costs paid only for the first stock. Acta Univ. Carolin. Math. Phys. 47 (2006), 2, 43-72.
MR 2512173
[14] Dostál, P.: Almost optimal trading strategies for small transaction costs and a HARA utility function. J. Comb. Inf. Syst. Sci. 35 (2010), 1-2, 257-291.
[15] Dostál, P.:
Futures trading with transaction costs. In: Proc. ALGORITMY 2009, (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak University of Technology in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428.
Zbl 1184.91199
[16] Dostál, P.:
Investment strategies in the long run with proportional transaction costs and HARA utility function. Quant. Finance 9 (2009), 2, 231-242.
DOI |
MR 2512992
[17] Dostál, P., Klůjová, J.:
Log-optimal investment in the long run with proportional transaction costs when using shadow prices. Kybernetika 51 (2015), 4, 588-628.
DOI |
MR 3423189
[18] Dupačová, J., Hurt, J., Štěpán, J.:
Stochastic Modeling in Economics and Finance. Kluwer, Dordrecht 2002.
MR 2008457
[19] Janeček, K.: Optimal Growth in Gambling and Investing. MSc Thesis, Charles University, Prague 1999.
[20] Janeček, K., Shreve, S. E.:
Asymptotic analysis for optimal investment and consumption with transaction costs. Finance Stoch. 8 (2004), 2, 181-206.
DOI |
MR 2048827
[21] Janeček, K., Shreve, S. E.:
Futures Trading with Transaction Costs. Illinois J. Math. 54 (2010), 4, 1239-1284.
DOI |
MR 2981847
[22] Kallenberg, O.:
Foundations of Modern Probability. Springer-Verlag, New York - Berlin - Heidelberg 1997.
MR 1464694 |
Zbl 0996.60001
[23] Kallsen, J., Muhle-Karbe, J.:
The general structure of optimal investment and consumption with small transaction costs. Math. Finance 27 (2017), 3, 659-703.
DOI |
MR 3668154
[24] Karatzas, I., Shreve, S. E.:
Brownian Motion and Stochastic Calculus. Springer-Verlag, New York - Berlin - Heidelberg 1991.
MR 1121940
[25] Kelly, J. L.:
A new interpretation of information rate. Bell System Techn. J. 35 (1956), 4, 917-926.
DOI |
MR 0090494
[27] Melnyk, Y., Seifried, F. T.:
Small-cost asymptotics for long-term growth rates in incomplete markets. Math. Finance 28 (2018), 2, 668-711.
DOI |
MR 3780971
[28] Merton, R. C.:
Optimum consumption and portfolio rules in a con\-ti\-nu\-ous-time model. J. Econom. Theory 3 (1971), 4, 373-413
DOI |
MR 0456373
[29] Morton, A. J., Pliska, S.:
Optimal portfolio management with fixed transaction costs. Math. Finance 5 (1995), 4, 337-356.
DOI |
Zbl 0866.90020
[30] Mulvey, J. M., Sun, Y., Wang, M., Ye, J.:
Optimizing a portfolio of mean-reverting assets with transaction costs via a feedforward neural network. Quant. Finance 20 (2020), 8, 1239-1261.
DOI |
MR 4138218
[31] Rotando, L. M., Thorp, E. O.:
The Kelly criterion and the stock market. Amer. Math. Monthly 99 (1992), 10, 922-931.
DOI |
MR 1190557 |
Zbl 0768.90105
[32] Samuelson, P. A.:
The fallacy of maximizing the geometric mean in long sequences of investing or gambling. Proc. Natl. Acad. Sci. USA 68 (1971), 10, 2493-2496.
DOI |
MR 0295739
[33] Shreve, S., Soner, H. M.:
Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994), 3, 609-692.
DOI |
MR 1284980 |
Zbl 0813.60051
[34] Thorp, E. O.:
Portfolio choice and the Kelly criterion. In: Stochastic Optimization Models in Finance, (W. T. Ziemba and R. G. Vickson, eds.), Academic Press, New York 1975, pp. 599-619.
DOI
[35] Thorp, E.:
The Kelly criterion in blackjack, sports betting and the stock market. In: 10th International Conference on Gambling and Risk Taking, Montreal 1997.
DOI
[36] Dostál, P.:
Supplement, 2022. Online:
DOI