Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
square-free number; Salié sum; Gauss sum
Summary:
We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev.
References:
[1] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. DOI 10.1093/qmath/os-3.1.273 | Zbl 0006.10401
[2] Dimitrov, S.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$, $x^2+y^2+2$ are square-free. Acta Arith. 194 (2020), 281-294. DOI 10.4064/aa190118-25-7 | MR 4096105 | Zbl 1469.11263
[3] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czech. Math. J. 71 (2021), 991-1009. DOI 10.21136/CMJ.2021.0165-20 | MR 4339105 | Zbl 07442468
[4] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method. Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. DOI 10.1112/plms/s3-12.1.425 | MR 0137677 | Zbl 0105.03606
[5] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. DOI 10.1007/BF01475576 | MR 0730168 | Zbl 0514.10038
[6] Louvel, B.: The first moment of Salié sums. Monatsh. Math. 168 (2012), 523-543. DOI 10.1007/s00605-011-0366-5 | MR 2993962 | Zbl 1314.11050
[7] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers. Available at https://arxiv.org/abs/1212.3150v2 (2012), 28 pages.
[8] Tolev, D. I.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$ is squarefree. Monatsh. Math. 165 (2012), 557-567. DOI 10.1007/s00605-010-0246-4 | MR 2891268 | Zbl 1297.11118
[9] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+y^2+z^2+k$. J. Number Theory 236 (2022), 308-322. DOI 10.1016/j.jnt.2021.07.022 | MR 4395352 | Zbl 07493027
Partner of
EuDML logo