Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Diophantine equation; prime; exponential sum; asymptotic formula
Summary:
Let $[{\cdot }]$ be the floor function. In this paper, we prove by asymptotic formula that when $1<c<\frac {3441}{2539}$, then every sufficiently large positive integer $N$ can be represented in the form $$ N=[p^c_1]+[p^c_2]+[p^c_3]+[p^c_4]+[p^c_5], $$ where $p_1$, $p_2$, $p_3$, $p_4$, $p_5$ are primes such that $p_1=x^2 + y^2 +1$.
References:
[1] Arkhipov, G. I., Zhitkov, A. N.: On Waring's problem with non-integral exponent. Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1138-1150 Russian. MR 772109 | Zbl 0568.10027
[2] Baker, R.: Some Diophantine equations and inequalities with primes. Funct. Approximatio, Comment. Math. 64 (2021), 203-250. DOI 10.7169/facm/1912 | MR 4278752 | Zbl 1484.11195
[3] Buriev, K.: Additive Problems with Prime Numbers: Thesis. Moscow State University, Moscow (1989), Russian. MR 0946769
[4] Deshouillers, J.-M.: Problème de Waring avec exposants non entiers. Bull. Soc. Math. Fr. 101 (1973), 285-295 French. DOI 10.24033/bsmf.1762 | MR 342477 | Zbl 0292.10038
[5] Deshouillers, J.-M.: Un problème binaire en théorie additive. Acta Arith. 25 (1974), 393-403 French. DOI 10.4064/aa-25-4-393-403 | MR 340204 | Zbl 0278.10020
[6] Dimitrov, S. I.: A ternary Diophantine inequality over special primes. JP J. Algebra Number Theory Appl. 39 (2017), 335-368. DOI 10.17654/NT039030335 | MR 3846403 | Zbl 1373.11032
[7] Dimitrov, S. I.: Diophantine approximation with one prime of the form $p=x^2+y^2+1$. Lith. Math. J. 61 (2021), 445-459. DOI 10.1007/s10986-021-09538-5 | MR 4344100 | Zbl 07441577
[8] Dimitrov, S. I.: A ternary Diophantine inequality by primes with one of the form $p=x^2+y^2+1$. Ramanujan J. 59 (2022), 571-607. DOI 10.1007/s11139-021-00545-1 | MR 4480301 | Zbl 7589232
[9] Dimitrov, S. I.: A quinary Diophantine inequality by primes with one of the form $p=x^2+y^2+1$. Available at https://arxiv.org/abs/2107.04028v2 (2021), 27 pages. MR 4480301
[10] Graham, S. W., Kolesnik, G.: Van der Corput's Method for Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, New York (1991). DOI 10.1017/CBO9780511661976 | MR 1145488 | Zbl 0713.11001
[11] Gritsenko, S. A.: Three additive problems. Russ. Acad. Sci., Izv., Math. 41 (1993), 447-464. DOI 10.1070/IM1993v041n03ABEH002271 | MR 1208161 | Zbl 0810.11057
[12] Heath-Brown, D. R.: The Piateckii-Sapiro prime number theorem. J. Number Theory 16 (1983), 242-266. DOI 10.1016/0022-314X(83)90044-6 | MR 698168 | Zbl 0513.10042
[13] Hilbert, D.: Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{ter}$ Potenzen (Waringsches Problem). Math. Ann. 67 (1909), 281-300 German \99999JFM99999 40.0236.03. DOI 10.1007/BF01450405 | MR 1511530
[14] Hooley, C.: Applications of Sieve Methods to the Theory of Numbers. Cambridge Tracts in Mathematics 70. Cambridge University Press, Cambridge (1976). MR 0404173 | Zbl 0327.10044
[15] Hua, L.-K.: Some results in the additive prime-number theory. Q. J. Math., Oxf. Ser. 9 (1938), 68-80. DOI 10.1093/qmath/os-9.1.68 | MR 3363459 | Zbl 0018.29404
[16] Huxley, M. N.: Exponential sums and the Riemann zeta function. V. Proc. Lond. Math. Soc., III. Ser. 90 (2005), 1-41. DOI 10.1112/plms/s3-66.1.1 | MR 1189090 | Zbl 1083.11052
[17] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). DOI 10.1090/coll/053 | MR 2061214 | Zbl 1059.11001
[18] Konyagin, S. V.: An additive problem with fractional powers. Math. Notes 73 (2003), 594-597. DOI 10.1023/A:1023279809491 | MR 1991912 | Zbl 1093.11006
[19] Li, S.: On a Diophantine equation with prime numbers. Int. J. Number Theory 15 (2019), 1601-1616. DOI 10.1142/S1793042119300011 | MR 3994149 | Zbl 1462.11084
[20] Linnik, Y. V.: An asymptotic formula in an additive problem of Hardy and Littlewood. Izv. Akad. Nauk SSSR, Ser. Mat. 24 (1960), 629-706 Russian. MR 122796 | Zbl 0099.03501
[21] Sargos, P., Wu, J.: Multiple exponential sums with monomials and their applications in number theory. Acta Math. Hung. 87 (2000), 333-354. DOI 10.1023/A:1006777803163 | MR 1771211 | Zbl 0963.11045
[22] Segal, B. I.: On a theorem analogous to Waring's theorem. Dokl. Akad. Nauk. SSSR 1933 (1933), 47-49 Russian. Zbl 0008.24303
[23] Segal, B. I.: Waring's theorem for powers with fractional and irrational exponents. Trudy Mat. Inst. Steklov. 5 (1934), 73-86 Russian. Zbl 0009.29905
[24] Tolev, D. I.: On a Diophantine inequality involving prime numbers. Acta Arith. 61 (1992), 289-306. DOI 10.4064/aa-61-3-289-306 | MR 1161480 | Zbl 0762.11033
[25] Zhang, M., Li, J.: On a Diophantine equation with five prime variables. Available at https://arxiv.org/abs/1809.04591v2 (2019), 17 pages.
[26] Zhang, M., Li, J.: On a Diophantine equation with three prime variables. Integers 19 (2019), Article ID A39, 13 pages. MR 3997444 | Zbl 1461.11133
Partner of
EuDML logo