[14] Gu, X.-M., Huang, T.-Z., Li, H.-B., Wang, S.-F., Li, L.:
Two CSCS-based iteration methods for solving absolute value equations. J. Appl. Anal. Comput. 7 (2017), 1336-1356.
DOI 10.11948/2017082 |
MR 3723924 |
Zbl 1451.65058
[16] Hashemi, F., Ketabchi, S.:
Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations. Numer. Algebra Control Optim. 10 (2020), 13-21.
DOI 10.3934/naco.2019029 |
MR 4155105 |
Zbl 07199000
[28] Mansoori, A., Eshaghnezhad, M., Effati, S.:
An efficient neural network model for solving the absolute value equations. IEEE Trans. Circuits Syst., II Exp. Briefs 65 (2017), 391-395.
DOI 10.1109/TCSII.2017.2750065
[29] Mao, X., Wangi, X., Edalatpanah, S. A., Fallah, M.:
The monomial preconditioned SSOR method for linear complementarity problem. IEEE Access 7 (2019), 73649-73655.
DOI 10.1109/ACCESS.2019.2920485
[33] Miao, S.-X., Zhang, D.:
On the preconditioned GAOR method for a linear complementarity problem with an $M$-matrix. J. Inequal. Appl. 2018 (2018), Article ID 195, 12 pages.
DOI 10.1186/s13660-018-1789-5 |
MR 3833836
[36] Noor, M. A., Noor, K. I., Batool, S.:
On generalized absolute value equations. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80 (2018), 63-70.
MR 3887289 |
Zbl 1424.90220