[1] Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.:
Tropicalizing the simplex algorithm. SIAM J. Discrete Math. 29 (2015), 2, 751-795.
DOI
[2] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J.-P.:
Synchronization and Linearity. Wiley Series in Probability and Statistics, Wiley, Chichester 1993.
Zbl 0824.93003
[3] Bouquard, J.-L., Lenté, C., Billaut, J.-C.:
Application of an optimization problem in max-plus algebra to scheduling problems. Discrete Appl. Math. 154 (2006), 15, 2064-2079.
DOI
[4] Butkovič, P.: Max-linear Systems. Springer Monographs in Mathematics, Springer, London 2010.
[5] Carré, B. A.:
An algebra for network routing problems. IMA J. Appl. Math. 7 (1971), 3, 273-294.
DOI
[6] Cuninghame-Green, R.:
Minimax Algebra. Lecture Notes in Economics and Mathematical Systems 166, Springer, Berlin 1979.
DOI |
Zbl 0739.90073
[7] Cuninghame-Green, R. A.:
Describing industrial processes with interference and approximating their steady-state behaviour. Oper. Res. Quart. 13 (1962), 1, 95-100.
DOI
[8] Cuninghame-Green, R. A.:
Minimax algebra and applications.
Zbl 0739.90073
[9] Puente, M. J. de la:
Quasi-Euclidean classification of alcoved convex polyhedra. Linear Multilinear Algebra 68 (2020), 10, 2110-2142.
DOI
[10] Demeulemeester, E. L., Herroelen, W. S.:
Project Scheduling. International Series in Operations Research and Management Science 49, Springer, New York 2002.
DOI
[11] Ehrgott, M.:
Multicriteria Optimization. Second edition. Springer, Berlin 2005.
DOI
[12] Gaubert, S., Katz, R. D.:
The Minkowski theorem for max-plus convex sets. Linear Algebra Appl. 421 (2007), 2, 356-369.
DOI
[13] Gaubert, S., Katz, R. D., Sergeev, S.:
Tropical linear-fractional programming and parametric mean payoff games. J. Symbolic Comput. 47 (2012), 12, 1447-1478.
DOI
[14] Giffler, B.:
Scheduling general production systems using schedule algebra. Naval Res. Logist. Quart. 10 (1963), 1, 237-255.
DOI
[15] Golan, J. S.:
Semirings and Affine Equations Over Them. Mathematics and Its Applications 556, Kluwer Acad. Publ., Dordrecht 2003.
DOI
[16] Gondran, M., Minoux, M.:
Graphs, Dioids and Semirings. Operations Research / Computer Science Interfaces 41, Springer, New York 2008.
DOI
[17] Goto, H.:
Robust MPL scheduling considering the number of in-process jobs. Eng. Appl. Artif. Intell. 22 (2009), 4, 603-607.
DOI
[18] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Princeton Series in Applied Mathematics, Princeton Univ. Press, Princeton 2006.
[19] Katz, R. D., Nitica, V., Sergeev, S.:
Characterization of tropical hemispaces by (P,R)-decompositions. Linear Algebra Appl. 440 (2014), 131-163.
DOI
[20] Kolokoltsov, V. N., Maslov, V. P.:
Idempotent Analysis and Its Applications. Mathematics and Its Applications 401, Springer, Dordrecht 1997.
DOI |
Zbl 0941.93001
[21] Krivulin, N.:
A constrained tropical optimization problem: Complete solution and application example. In: Tropical and Idempotent Mathematics and Applications (G. L. Litvinov and S. N. Sergeev, eds.), Contemporary Mathematics 616, AMS, Providence 2014, pp. 163-177.
DOI
[22] Krivulin, N.:
Extremal properties of tropical eigenvalues and solutions to tropical optimization problems. Linear Algebra Appl. 468 (2015), 211-232.
DOI
[23] Krivulin, N.:
A multidimensional tropical optimization problem with nonlinear objective function and linear constraints. Optimization 64 (2015), 5, 1107-1129.
DOI
[24] Krivulin, N.:
Direct solution to constrained tropical optimization problems with application to project scheduling. Comput. Manag. Sci. 14 (2017), 1, 91-113.
DOI
[25] Krivulin, N.:
Tropical optimization problems in time-constrained project scheduling. Optimization 66 (2017), 2, 205-224.
DOI
[26] Krivulin, N.:
Tropical optimization problems with application to project scheduling with minimum makespan. Ann. Oper. Res. 256 (2017), 1, 75-92.
DOI
[27] Krivulin, N.:
Tropical optimization technique in bi-objective project scheduling under temporal constraints. Comput. Manag. Sci. 17 (2020), 3, 437-464.
DOI
[28] Neumann, K., Schwindt, C., Zimmermann, J.:
Project Scheduling with Time Windows and Scarce Resources. Second edition. Springer, Berlin 2003.
DOI
[29] Sergeev, S., Liu, Z.: Tropical analogues of a Dempe-Franke bilevel optimization problem. In: Optimization of Complex Systems: Theory, Models, Algorithms and Applications (H. A. Le Thi, H. M. Le, and T. Pham Dinh, eds.), Springer, Cham 2020, pp. 691-701.
[30] T'kindt, V., Billaut, J.-C.:
Multicriteria Scheduling. Second edition. Springer, Berlin 2006.
DOI
[31] Yoeli, M.:
A note on a generalization of boolean matrix theory. Amer. Math. Monthly 68 (1961), 6, 552-557.
DOI |
Zbl 0115.02103