Previous |  Up |  Next

Article

Keywords:
interval tensor; max-plus algebra; multi-linear systems; weak solvability; job shop problem
Summary:
In this paper, we propose the notions of the max-plus algebra of the interval tensors, which can be used for the extension of interval linear systems to interval multi-linear systems in the max-plus algebra. Some properties and basic results of interval multi-linear systems in max-plus algebra are derived. An algorithm is developed for computing a solution of the multi-linear systems in the max-plus algebra. Necessary and sufficient conditions for the interval multi-linear systems for weak solvability over max-plus algebra are obtained as well. Also, some examples are given for illustrating the obtained results. Moreover, we briefly sketch how our results can be used in the max-plus algebraic system theory for synchronized discrete event systems.
References:
[1] Afshin, H. R., Shojaeifard, A. R.: Max-plus algebra on tensor s and its properties. Wavelet and Linear Algebra 3 (2016), 1-11.
[2] Aminu, A. A., Olowo, S. E., Sulaiman, I. M., Bakar, N. A., Mamat, M.: On application of max-plus algebra to synchoronized discrete event system. Math. Statist. 9 (2021), 81-92. DOI 
[3] Bozorgmanesh, H., Hajarian, M., Chronopoulos, A. T.: Interval tensors and their application in solving multi-linear systems of equations. Computers Math. Appl. 79 (2020), 697-715. DOI 
[4] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer Science and Business Media, 2010. Zbl 1202.15032
[5] Cechlárová, K., Cuninghame-Green, R. A.: Interval systems of max-separable linear equations. Linear Algebra Appl. 340 (2002), 215-224. DOI  | Zbl 1004.15009
[6] Cuninghame-Green, R. A.: Minimax Algebra. Vol. 166. Springer Science and Business Media, 2012.
[7] Fijavž, M. K., Peperko, A., Sikolya, E.: Semigroups of max-plus linear operators. Semigroup Forum 94 (2017), 463-476. DOI 10.1007/s00233-015-9761-x
[8] Friedland, S., Gaubert, S.: Spectral inequa lities for nonnegative tensors and their tropical analogues. Vietnam J. Math. 48 (2020), 893-928. DOI 
[9] Gaubert, S., Plus, M.: Methods and applications of (max,+) linear algebra. In: Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin, Heidelberg 1997.
[10] Gavalec, M., Zimmermann, K.: Solving systems of two-sided (max, min)-linear equations. Kybernetika 46 (2010), 405-414. DOI 
[11] Gavalec, M., Plavka, J., Ponce, D.: Strong, strongly universal and weak interval eigenvectors in max-plus algebra. Mathematics 8 (2020), 1348. DOI 10.3390/math8081348
[12] Goto, H.: Robust MPL scheduling considering the number of in-process jobs. Engrg. Appl. Artificial Intell. 22 (2009), 603-607. DOI 
[13] Guo, Q., Liu, J. G.: An two phase abs method for solving over determined systems of linear inequalities. J. Appl. Math. Comput. 21 (2006), 259-267. DOI 
[14] Krivulin, N.: Direct solution to constrained tropical optimization problems with application to project scheduling. Comput. Management Sci. 14 (2017), 91-113. DOI 
[15] Muller, V., Peperko, A.: On the spectrum in max algebra. Linear Algebra and its Applications 485 (2015), 250-266. DOI 
[16] Myšková, H.: Interval systems of max-separable linear equations. Linear Algebra Appl. 403 (2005), 263-272. DOI  | Zbl 1129.15003
[17] Myšková, H.: Interval max-plus systems of linear equations. Linear Algebra Appl. 437 (2012), 1992-2000. DOI 
[18] Myšková, H.: Max-min interval systems of linear equations with bounded solution. Kybernetika 48 (2012), 299-308. DOI 
[19] Singh, M.: Mathematical Models, Heuristics and Algorithms for Efficient Analysis and Performance Evaluation of Job Shop Scheduling Systems Using Max-Plus Algebraic Techniques. Dissertation, Ohio University; 2013.
[20] Singh, M., Judd, R. P.: Efficient calculation of the makespan for job-shop systems without recirculation using max-plus algebra. Int. J. Product. Res. 52 (2014), 5880-5894. DOI 
[21] Žužek, T., Peperko, A., Kušar, J.: A max-plus algebra approach for generating non-delay schedule. Croatian Oper. Res. Rev. 4 (2019), 35-44. DOI 10.17535/crorr.2019.0004
Partner of
EuDML logo