[1] Barzilai, J.:
Deriving weights from pairwise comparison matrices. J. Oper. Res. Soc. 48 (1997), 12, 1226-1232.
DOI
[2] Belton, V., Gear, T.:
On a short-coming of Saaty's method of analytic hierarchies. Omega 11 (1983), 3, 228-230.
DOI
[3] Benson, H. P.:
Multi-objective optimization: Pareto optimal solutions, properties. In: Encyclopedia of Optimization. Second edition. (C. A. Floudas and P. M. Pardalos, eds), Springer, Boston 2009, pp. 2478-2481.
DOI
[4] Choo, E. U., Wedley, W. C.:
A common framework for deriving preference values from pairwise comparison matrices. Comput. Oper. Res. 31 (2004), 6, 893-908.
DOI
[5] Crawford, G., Williams, C.:
A note on the analysis of subjective judgment matrices. J. Math. Psych. 29 (1985), 4, 387-405.
DOI
[6] Ehrgott, M.:
Multicriteria Optimization. Second edition. Springer, Berlin 2005.
DOI
[7] Elsner, L., Driessche, P. van den:
Max-algebra and pairwise comparison matrices. Linear Algebra Appl. 385 (2004), 1, 47-62.
DOI
[8] Elsner, L., Driessche, P. van den:
Max-algebra and pairwise comparison matrices, II. Linear Algebra Appl. 432 (2010), 4, 927-935.
DOI
[9] Gavalec, M., Ramík, J., Zimmermann, K.:
Decision Making and Optimization. Lecture Notes in Economics and Mathematical Systems 677, Springer, Cham 2015.
DOI
[10] Golan, J. S.:
Semirings and Ane Equations Over Them. Mathematics and Its Applications. 556, Springer, Dordrecht 2003.
DOI
[11] Gondran, M., Minoux, M.:
Graphs, Dioids and Semirings. Operations Research/ Computer Science Interfaces 41, Springer, Boston 2008.
DOI
[12] Goto, H., Wang, S.:
Polyad inconsistency measure for pairwise comparisons matrices: max-plus algebraic approach. Oper. Res. Int. J. 22 (2022), 1, 401-422.
DOI
[13] Gursoy, B. B., Mason, O., Sergeev, S.:
The analytic hierarchy process, max algebra and multi-objective optimisation. Linear Algebra Appl. 438 (2013), 7, 2911-2928.
DOI
[14] Heidergott, B., Olsder, G. J., Woude, J. van der: Max Plus at Work. Princeton Series in Applied Mathematics. Princeton University Press, Princeton 2006.
[15] Kolokoltsov, V. N., Maslov, V. P.:
Idempotent Analysis and Its Applications. Mathematics and Its Applications 401, Springer, Dordrecht 1997.
DOI |
Zbl 0941.93001
[16] Krivulin, N.:
A constrained tropical optimization problem: Complete solution and application example. In: Tropical and Idempotent Mathematics and Applications (G. L. Litvinov and S. N. Sergeev, eds.), Contemporary Mathematics 616, AMS, Providence 2014, pp. 163-177.
DOI
[17] Krivulin, N.:
Extremal properties of tropical eigenvalues and solutions to tropical optimization problems. Linear Algebra Appl. 468 (2015), 211-232.
DOI
[18] Krivulin, N.:
A multidimensional tropical optimization problem with nonlinear objective function and linear constraints. Optimization 64 (2015), 5, 1107-1129.
DOI
[19] Krivulin, N.:
Rating alternatives from pairwise comparisons by solving tropical optimization problems. In: 12th Intern. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD) (Z. Tang, J. Du, S. Yin, L. He, and R. Li, eds.), IEEE, 2015, pp. 162-167.
DOI
[20] Krivulin, N.:
Using tropical optimization techniques to evaluate alternatives via pairwise comparisons. In: Proc. 7th SIAM Workshop on Combinatorial Scientific Computing (A. H. Gebremedhin, E. G. Boman, and B. Ucar, eds.), SIAM, Philadelphia 2016, pp. 62-72.
DOI
[21] Krivulin, N.:
Direct solution to constrained tropical optimization problems with application to project scheduling. Comput. Manag. Sci. 14 (2017), 1, 91-113.
DOI
[22] Krivulin, N.:
Using tropical optimization techniques in bi-criteria decision problems. Comput. Manag. Sci. 17 (2020), 1, 79-104.
DOI
[23] Krivulin, N.:
Algebraic solution to constrained bi-criteria decision problem of rating alternatives through pairwise comparisons. Mathematics 9 (2021), 4, 303.
DOI
[24] Krivulin, N., Sergeev, S.:
Tropical implementation of the Analytical Hierarchy Process decision method. Fuzzy Sets Systems 377 (2019), 31-51.
DOI
[25] Luc, D. T.:
Pareto optimality. In: Pareto Optimality, Game Theory and Equilibria (A. Chinchuluun, P. M. Pardalos, A. Migdalas, and L. Pitsoulis, eds.), Springer, New York 2008, pp. 481-515.
DOI
[26] Maclagan, D., Sturmfels, B.:
Introduction to Tropical Geometry. Graduate Studies in Mathematics 161, AMS, Providence 2015.
DOI
[27] Pappalardo, M.:
Multiobjective optimization: A brief overview. In: Pareto Optimality, Game Theory and Equilibria (A. Chinchuluun, P. M. Pardalos, A. Migdalas, and L. Pitsoulis, eds.), Springer, New York 2008, pp. 517-528.
DOI
[28] Portugal, R. D., Svaiter, B. F.:
Weber-Fechner law and the optimality of the logarithmic scale. Minds Mach. 21 (2011), 1, 73-81.
DOI
[29] Ramesh, R., Zionts, S.:
Multiple criteria decision making. In: Encyclopedia of Operations Research and Management Science (S. I. Gass and M. C. Fu, eds.), Springer, Boston 2013, pp. 1007-1013.
DOI
[30] Ramík, J.:
Pairwise Comparisons Method. Lecture Notes in Economics and Mathematical Systems 690, Springer, Cham 2020.
DOI
[31] Saaty, T. L.:
A scaling method for priorities in hierarchical structures. J. Math. Psych. 15 (1977), 3, 234-281.
DOI
[32] Saaty, T. L.: The Analytic Hierarchy Process. Second edition. RWS Publications, Pittsburgh 1990.
[33] Saaty, T. L.:
On the measurement of intangibles: A principal eigenvector approach to relative measurement derived from paired comparisons. Notices Amer. Math. Soc. 60 (2013), 2, 192-208.
DOI
[34] Saaty, T. L., Vargas, L. G.:
Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math. Modelling 5 (1984), 5, 309-324.
DOI