[1] Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.:
On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21 (4) (2016), 661–681.
MR 3495061
[2] Agarwal, R.P., Benchohra, M., Seba, D.:
On the application of measure of noncom-pactness to the existence of solutions for fractional differential equations. Results Math. 55 (2009), 221–230.
DOI 10.1007/s00025-009-0434-5 |
MR 2571191
[3] Ahmad, B., Khan, R.A., Sivasundaram, S.:
Generalized quasilinearization method for a first order differential equation with integral boundary condition. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 12 (2) (2005), 289–296.
MR 2170414 |
Zbl 1084.34007
[4] Ahmad, B., Ntouyas, S.K.:
Initial value problems for hybrid Hadamard fractional equations. Electron. J. Differential Equ. 2014 (161) (2014), 8 pp.
MR 3239404
[5] Akhmerov, R.R., Kamenski, M.I., Patapov, A.S., Rodkina, A.E., Sadovski, B.N.:
Measures of noncompactness and condensing operators (Translated from the 1986 Russian original by A. Iacop), Operator theory: Advances and Applications. ranslated from the 1986 russian original by a. iacop), operator theory: advances and applications, vol. 55, Birkhäuser Verlag, Basel, 1992.
MR 1153247
[6] Aubin, J.P., Cellina, A.:
Differential inclusions. Springer-Verlag, Berlin-Heidelberg, New York, 1984.
MR 0755330
[7] Aubin, J.P., Frankowska, H.:
Set-valued analysis. Birkhäuser, Boston, 1990.
MR 1048347
[8] Banas, J., Goebel, K.:
Measure of noncompactness in Banach spaces. Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 1980.
MR 0591679
[9] Belarbi, A., Benchohra, M.:
Existence results for nonlinear boundary-value problems with integral boundary conditions. Electron. J. Differential Equ. 6 (2005), 1–10.
MR 2119058
[11] Benchohra, M., Hamani, S.:
Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. 32 (1) (2008), 115–130.
MR 2466806 |
Zbl 1180.26002
[12] Benchohra, M., Henderson, J., Seba, D.:
Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12 (2008), 419–428.
MR 2494987
[13] Benchohra, M., Henderson, J., Seba, D.:
Measure of noncompactness and fractional andhyperbolic partial fractional differential equations in Banach space. PanAmer. Math. J. 20 (2010), 27–37.
MR 2760586
[14] Benchohra, M., Henderson, J., Seba, D.:
Boundary value problems for fractional differential inclusions in Banach space. Fract. Differ. Calc. 2 (2012), 99–108.
MR 3003005
[15] Benhamida, W., Hamani, S.: Measure of noncompactness and Caputo-Hadamard fractional differantial equations in Banach spaces. Eur. Bull. Math. 1 (3) (2018), 98–103.
[16] Benhamida, W., Hamani, S., Henderson, J.:
Boundary value problems for Caputo-Hadamard fractional differential equations. Adv. Theor. Nonlinear Anal. Appl. 2 (3) (2018), 138–145.
MR 3957191
[18] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.:
Composition of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269 (2002), 387–400.
DOI 10.1016/S0022-247X(02)00049-5 |
MR 1907120
[21] Deimling, .K.:
Multivalued differential equations. Walter De Gruyter, Berlin-New York, 1992.
MR 1189795
[22] Denche, M., Marhoune, A.L.:
High order mixed-type differential equations with weighted integral boundary conditions. Electron. J. Differential Equ. 2000 (60) (2000), 1–10.
MR 1787207
[23] Diethelm, K., Freed, A.D.:
On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (Keil, F., Mackens, W., Voss, H., Werther, J., eds.), Springer-Verlag, Heidelberg, 1999, pp. 217–224.
MR 1415870
[24] Gallardo, J.M.:
Second order differential operators with integral boundary conditions and generation of semigroups. Rocky Mountain J. Math. 30 (2000), 1265–1292.
MR 1810167
[25] Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.:
On Caputo modification of the Hadamard fractional derivatives. Adv. Difference Equ. 2014 (10) (2014), 12 pp.
MR 3213915
[26] Gaul, L., Klein, P., Kempfle, S.:
Damping description involving fractional operators. Mech. Systems Signal Processing 5 (1991), 81–88.
DOI 10.1016/0888-3270(91)90016-X
[27] Glockle, W.G., Nonnenmacher, T.F.:
A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68 (1995), 46–53.
DOI 10.1016/S0006-3495(95)80157-8
[28] Hadamard, J.: Essai sur l’étude des fonctions donnees par leur development de Taylor. J. Math. Pure Appl. 8 (1892), 101–186.
[29] Hilfer, R.:
Applications of fractional calculus in physics. World Scientific, Singapore, 2000.
MR 1890104 |
Zbl 0998.26002
[30] Jarad, F., Abdeljawad, T., Baleanu, D.:
Caputo-type modification of the Hadamard fractional derivatives. Adv. Difference Equ. 2012 (142) (2012), 8 pp.
MR 2992066
[31] Karakostas, G.L., Tsamatos, P.Ch.:
Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary value problems. Electron. J. Differential Equ. 2002 (30) (2002), 1–17.
MR 1907706
[33] Kilbas, A.A.:
Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (6) (2001), 1191–1204.
MR 1858760
[34] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.:
Theory and applications of fractional differential equations. North-Holland Math. Studies, Elsevier Science B.V., Amsterdam, 2006.
MR 2218073
[37] Lomtatidze, A., Malaguti, L.:
On a nonlocal boundary value problems for second order nonlinear singular differential equations. Georgian Math. J. 7 (2000), 133–154.
DOI 10.1515/GMJ.2000.133 |
MR 1768050
[38] Mainardi, F.:
Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics (Carpinteri, A., Mainardi, F., eds.), Springer-Verlag, Wien, 1997, pp. 291–348.
MR 1611587
[39] Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.:
Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103 (1995), 7180–7186.
DOI 10.1063/1.470346
[40] Miller, K.S., Ross, B.:
An introduction to the fractional calculus and differential equations. John Wiley, New York, 1993.
MR 1219954
[41] Oldham, K.B., Spanier, J.:
The fractional calculus. Academic Press, New York, London, 1974.
MR 0361633
[42] O’Regan, D., Precup, R.:
Fixed point theorems for set-valued maps and existence prin-ciples for integral inclusions. J. Math. Anal. Appl. 245 (2000), 594–612.
DOI 10.1006/jmaa.2000.6789 |
MR 1758558
[43] Thiramanus, P., Ntouyas, S.K., Tariboon, J.:
xistence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. 2014 (2014), 9 pp., Art. ID 902054.
MR 3228094