Title:
|
On the quasi-periodic $p$-adic Ruban continued fractions (English) |
Author:
|
Ammous, Basma |
Author:
|
Ben Mahmoud, Nour |
Author:
|
Hbaib, Mohamed |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
72 |
Issue:
|
4 |
Year:
|
2022 |
Pages:
|
1157-1166 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei. (English) |
Keyword:
|
continued fraction |
Keyword:
|
$p$-adic number |
Keyword:
|
transcendence |
Keyword:
|
subspace theorem |
MSC:
|
11A55 |
MSC:
|
11D88 |
MSC:
|
11J81 |
idZBL:
|
Zbl 07655790 |
idMR:
|
MR4517603 |
DOI:
|
10.21136/CMJ.2022.0409-21 |
. |
Date available:
|
2022-11-28T11:41:37Z |
Last updated:
|
2025-01-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151137 |
. |
Reference:
|
[1] Adamczewski, B., Bugeaud, Y.: On the decimal expansion of algebraic numbers.Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. Zbl 1138.11028, MR 2191109 |
Reference:
|
[2] Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers. I. Expansions in integer bases.Ann. Math. (2) 165 (2007), 547-565. Zbl 1195.11094, MR 2299740, 10.4007/annals.2007.165.547 |
Reference:
|
[3] Adamczewski, B., Bugeaud, Y.: On the Maillet-Baker continued fractions.J. Reine Angew. Math. 606 (2007), 105-121. Zbl 1145.11054, MR 2337643, 10.1515/CRELLE.2007.036 |
Reference:
|
[4] Baker, A.: Continued fractions of transcendental numbers.Mathematika, Lond. 9 (1962), 1-8. Zbl 0105.03903, MR 0144853, 10.1112/S002557930000303X |
Reference:
|
[5] Laohakosol, V.: A characterization of rational numbers by $p$-adic Ruban continued fractions.J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. Zbl 0582.10021, MR 0802720, 10.1017/S1446788700026070 |
Reference:
|
[6] LeVeque, W. J.: Topics in Number Theory. II.Addison-Wesley, Reading (1956). Zbl 0070.03804, MR 0080682 |
Reference:
|
[7] Mahler, K.: Zur Approximation $p$-adischer Irrationalzahlen.Nieuw Arch. Wiskd. 18 (1934), 22-34 German. Zbl 0009.20003 |
Reference:
|
[8] Maillet, E.: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions.Gauthier-Villars, Paris (1906), French \99999JFM99999 37.0237.02. |
Reference:
|
[9] Neukirch, J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). Zbl 0956.11021, MR 1697859, 10.1007/978-3-662-03983-0 |
Reference:
|
[10] Ooto, T.: Transcendental $p$-adic continued fractions.Math. Z. 287 (2017), 1053-1064. Zbl 1388.11040, MR 3719527, 10.1007/s00209-017-1859-2 |
Reference:
|
[11] Ruban, A. A.: Some metric properties of $p$-adic numbers.Sib. Math. J. 11 (1970), 176-180. Zbl 0213.32701, MR 0260700, 10.1007/BF00970247 |
Reference:
|
[12] Schlickewei, H. P.: The $p$-adic Thue-Siegel-Roth-Schmidt theorem.Arch. Math. 29 (1977), 267-270. Zbl 0365.10026, MR 0491529, 10.1007/BF01220404 |
Reference:
|
[13] Schmidt, W. M.: Diophantine Approximation.Lecture Notes in Mathematics 785. Springer, Berlin (1980). Zbl 0421.10019, MR 0568710, 10.1007/978-3-540-38645-2 |
Reference:
|
[14] Wang, L.: $P$-adic continued fractions. I.Sci. Sin., Ser. A 28 (1985), 1009-1017. Zbl 0628.10036, MR 0866457 |
. |