Previous |  Up |  Next

Article

Title: On the quasi-periodic $p$-adic Ruban continued fractions (English)
Author: Ammous, Basma
Author: Ben Mahmoud, Nour
Author: Hbaib, Mohamed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1157-1166
Summary lang: English
.
Category: math
.
Summary: We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei. (English)
Keyword: continued fraction
Keyword: $p$-adic number
Keyword: transcendence
Keyword: subspace theorem
MSC: 11A55
MSC: 11D88
MSC: 11J81
idZBL: Zbl 07655790
idMR: MR4517603
DOI: 10.21136/CMJ.2022.0409-21
.
Date available: 2022-11-28T11:41:37Z
Last updated: 2025-01-06
Stable URL: http://hdl.handle.net/10338.dmlcz/151137
.
Reference: [1] Adamczewski, B., Bugeaud, Y.: On the decimal expansion of algebraic numbers.Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. Zbl 1138.11028, MR 2191109
Reference: [2] Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers. I. Expansions in integer bases.Ann. Math. (2) 165 (2007), 547-565. Zbl 1195.11094, MR 2299740, 10.4007/annals.2007.165.547
Reference: [3] Adamczewski, B., Bugeaud, Y.: On the Maillet-Baker continued fractions.J. Reine Angew. Math. 606 (2007), 105-121. Zbl 1145.11054, MR 2337643, 10.1515/CRELLE.2007.036
Reference: [4] Baker, A.: Continued fractions of transcendental numbers.Mathematika, Lond. 9 (1962), 1-8. Zbl 0105.03903, MR 0144853, 10.1112/S002557930000303X
Reference: [5] Laohakosol, V.: A characterization of rational numbers by $p$-adic Ruban continued fractions.J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. Zbl 0582.10021, MR 0802720, 10.1017/S1446788700026070
Reference: [6] LeVeque, W. J.: Topics in Number Theory. II.Addison-Wesley, Reading (1956). Zbl 0070.03804, MR 0080682
Reference: [7] Mahler, K.: Zur Approximation $p$-adischer Irrationalzahlen.Nieuw Arch. Wiskd. 18 (1934), 22-34 German. Zbl 0009.20003
Reference: [8] Maillet, E.: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions.Gauthier-Villars, Paris (1906), French \99999JFM99999 37.0237.02.
Reference: [9] Neukirch, J.: Algebraic Number Theory.Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). Zbl 0956.11021, MR 1697859, 10.1007/978-3-662-03983-0
Reference: [10] Ooto, T.: Transcendental $p$-adic continued fractions.Math. Z. 287 (2017), 1053-1064. Zbl 1388.11040, MR 3719527, 10.1007/s00209-017-1859-2
Reference: [11] Ruban, A. A.: Some metric properties of $p$-adic numbers.Sib. Math. J. 11 (1970), 176-180. Zbl 0213.32701, MR 0260700, 10.1007/BF00970247
Reference: [12] Schlickewei, H. P.: The $p$-adic Thue-Siegel-Roth-Schmidt theorem.Arch. Math. 29 (1977), 267-270. Zbl 0365.10026, MR 0491529, 10.1007/BF01220404
Reference: [13] Schmidt, W. M.: Diophantine Approximation.Lecture Notes in Mathematics 785. Springer, Berlin (1980). Zbl 0421.10019, MR 0568710, 10.1007/978-3-540-38645-2
Reference: [14] Wang, L.: $P$-adic continued fractions. I.Sci. Sin., Ser. A 28 (1985), 1009-1017. Zbl 0628.10036, MR 0866457
.

Files

Files Size Format View
CzechMathJ_72-2022-4_19.pdf 224.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo