Keywords: $n$-ideal; quasi $n$-ideal; $(2,n)$-ideal
Summary: Let $R$ be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of $n$-ideals and the class of \hbox {$(2,n)$-ideals}. A proper ideal $I$ of $R$ is said to be a quasi $n$-ideal if $\sqrt {I}$ is an $n$-ideal of $R.$ Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the $n$-ideals, the quasi primary ideals, the $(2,n)$-ideals and the \hbox {$pr$-ideals}. Moreover, we use the quasi $n$-ideals to characterize some kind of rings. Finally, we investigate quasi $n$-ideals under various contexts of constructions such as direct product, power series, idealization, and amalgamation of a ring along an ideal.
[4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. DOI 10.1515/9783110213188.155 | MR 2606283 | Zbl 1177.13043
[5] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in amalgamated algebras along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689 | Zbl 1191.13006