Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
graded Frobenius algebra; coalgebra; twisted superpotential
Summary:
In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected $\mathbb Z$-graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2.
References:
[1] Dăscălescu, S., Năstăsescu, C., Năstăsescu, L.: Frobenius algebras of corepresentations and group-graded vector spaces. J. Algebra 406 (2014), 226-250. DOI 10.1016/j.jalgebra.2014.02.020 | MR 3188336 | Zbl 1318.16029
[2] He, J.-W., Xia, X.-J.: Constructions of graded Frobenius algebras. J. Algebra Appl. 19 (2020), Article ID 2050081, 14 pages. DOI 10.1142/S0219498820500814 | MR 4114433 | Zbl 1457.16043
[3] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[4] Murray, W.: Nakayama automorphisms of Frobenius algebra. J. Algebra 269 (2003), 599-609. DOI 10.1016/S0021-8693(03)00465-4 | MR 2015856 | Zbl 1071.16014
[5] Nakayama, T.: On Frobeniusean algebras. I. Ann. Math. (2) 40 (1939), 611-633 \99999JFM99999 65.0097.04. DOI 10.2307/1968946 | MR 0000016
[6] Nakayama, T.: On Frobeniusean algebras. II. Ann. Math. (2) 42 (1941), 1-21 \99999JFM99999 67.0092.04. DOI 10.2307/1968984 | MR 0004237
[7] Smith, S. P.: Some finite dimensional algebras related elliptic curves. Representation Theory of Algebras and Related Topics CMS Conference Proceedings. AMS, Providence (1996), 315-348. MR 1388568 | Zbl 0856.16009
[8] Wakamatsu, T.: On graded Frobenius algebra. J. Algebra 269 (2003), 377-395. DOI 10.1016/S0021-8693(03)00262-X | MR 2003334 | Zbl 1031.16025
Partner of
EuDML logo