Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
restricted weak type; one-sided maximal operator
Summary:
We give a quantitative characterization of the pairs of weights $(w,v)$ for which the dyadic version of the one-sided Hardy-Littlewood maximal operator satisfies a restricted weak $(p,p)$ type inequality for $1\leq p<\infty $. More precisely, given any measurable set $E_0$, the estimate $$ w ( \{x\in \mathbb {R}^n\colon M^{+,d}(\mathcal {X}_{E_0})(x)>t \})\leq \frac {C[(w,v)]_{A_p^{+,d}(\mathcal {R})}^p}{t^p}v(E_0) $$ holds if and only if the pair $(w,v)$ belongs to $A_p^{+,d}(\mathcal {R})$, that is, $$ \frac {|E|}{|Q|}\leq [(w,v)]_{A_p^{+,d}(\mathcal {R})} \Bigl (\frac {v(E)}{w(Q)}\Bigr )^{ 1/p} $$ for every dyadic cube $Q$ and every measurable set $E\subset Q^+$. The proof follows some ideas appearing in S. Ombrosi (2005). We also obtain a similar quantitative characterization for the non-dyadic case in $\mathbb {R}^2$ by following the main ideas in L. Forzani, F. J. Martín-Reyes, S. Ombrosi (2011).
References:
[1] Forzani, L., Martín-Reyes, F. J., Ombrosi, S.: Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 363 (2011), 1699-1719. DOI 10.1090/S0002-9947-2010-05343-7 | MR 2746661 | Zbl 1218.42008
[2] Kinnunen, J., Saari, O.: On weights satisfying parabolic Muckenhoupt conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 131 (2016), 289-299. DOI 10.1016/j.na.2015.07.014 | MR 3427982 | Zbl 1341.42040
[3] Kinnunen, J., Saari, O.: Parabolic weighted norm inequalities and partial differential equations. Anal. PDE 9 (2016), 1711-1736. DOI 10.2140/apde.2016.9.1711 | MR 3570236 | Zbl 1351.42023
[4] Lerner, A. K., Ombrosi, S.: A boundedness criterion for general maximal operators. Publ. Mat., Barc. 54 (2010), 53-71. DOI 10.5565/PUBLMAT_54110_03 | MR 2603588 | Zbl 1183.42024
[5] Martín-Reyes, F. J.: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Proc. Am. Math. Soc. 117 (1993), 691-698. DOI 10.1090/S0002-9939-1993-1111435-2 | MR 1111435 | Zbl 0771.42011
[6] Martín-Reyes, F. J., Torre, A. de la: Two weight norm inequalities for fractional one-sided maximal operators. Proc. Am. Math. Soc. 117 (1993), 483-489. DOI 10.1090/S0002-9939-1993-1110548-9 | MR 1110548 | Zbl 0769.42010
[7] Martín-Reyes, F. J., Salvador, P. Ortega, Torre, A. de la: Weighted inequalities for one- sided maximal functions. Trans. Am. Math. Soc. 319 (1990), 517-534. DOI 10.1090/S0002-9947-1990-0986694-9 | MR 986694 | Zbl 0696.42013
[8] Ombrosi, S.: Weak weighted inequalities for a dyadic one-sided maximal function in ${\mathbb R}^n$. Proc. Am. Math. Soc. 133 (2005), 1769-1775. DOI 10.1090/S0002-9939-05-07830-5 | MR 2120277 | Zbl 1063.42011
[9] Salvador, P. Ortega: Weighted inequalities for one-sided maximal functions in Orlicz spaces. Stud. Math. 131 (1998), 101-114. DOI 10.4064/sm-131-2-101-114 | MR 1636403 | Zbl 0922.42012
[10] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Am. Math. Soc. 297 (1986), 53-61. DOI 10.1090/S0002-9947-1986-0849466-0 | MR 849466 | Zbl 0627.42009
Partner of
EuDML logo