Article
Keywords:
ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value
Summary:
Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals.
References:
[6] Landau, E.:
Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. German B. G. Teubner, Leipzig (1927),\99999JFM99999 53.0141.09.
MR 0031002