Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Quillen-Suslin theorem; stably free module; Hermite ring conjecture; Laurent polynomial ring; constructive mathematics
Summary:
We prove that for any ring ${\bf R}$ of Krull dimension not greater than 1 and $n\geq 3$, the group ${\rm E}_{n}({\bf R}[X, X^{-1}])$ acts transitively on ${\rm Um}_{n}({\bf R} [X, X^{-1}])$. In particular, we obtain that for any ring ${\bf R}$ with Krull dimension not greater than 1, all finitely generated stably free modules over ${\bf R} [X, X^{-1}]$ are free. All the obtained results are proved constructively.
References:
[1] Amidou, M., Yengui, M.: An algorithm for unimodular completion over Laurent polynomial rings. Linear Algebra Appl. 429 (2008), 1687-1698. DOI 10.1016/j.laa.2008.05.002 | MR 2444354 | Zbl 1147.13004
[2] Barhoumi, S., Yengui, I.: On a localization of the Laurent polynomial ring. JP J. Algebra Number Theory Appl. 5 (2005), 591-602. MR 2189971 | Zbl 1095.13006
[3] Bass, H.: Libération des modules projectifs sur certains anneaux des polynômes. Sém. Bourbaki 1973/1974, Expose 448 Lecture Notes in Mathematics 431. Springer, Berlin (1975), 228-354 French. MR 0472826 | Zbl 0304.13012
[4] Coquand, T., Lombardi, H., Quitté, C.: Generating non-Noetherian modules constructively. Manuscr. Math. 115 (2004), 513-520. DOI 10.1007/s00229-004-0509-2 | MR 2103665 | Zbl 1059.13006
[5] Ellouz, A., Lombardi, H., Yengui, I.: A constructive comparison for the rings $R(X)$ and $R\langle X\rangle$ and application to the Lequain-Simis induction theorem. J. Algebra 320 (2008), 521-533. DOI 10.1016/j.jalgebra.2007.12.004 | MR 2422305 | Zbl 1147.13012
[6] Huckaba, J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). MR 0938741 | Zbl 0637.13001
[7] Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985). DOI 10.1007/978-1-4614-5987-3 | MR 0789602 | Zbl 0563.13001
[8] Lam, T. Y.: Serre's Conjecture. Lecture Notes in Mathematics 635. Springer, Berlin (1978). DOI 10.1007/BFb0068340 | MR 0485842 | Zbl 0373.13004
[9] Lam, T. Y.: Serre's Problem on Projective Modules. Springer Monograph Mathematics. Springer, Berlin (2006). DOI 10.1007/978-3-540-34575-6 | MR 2235330 | Zbl 1101.13001
[10] Lombardi, H., Quitté, C.: Commutative Algebra: Constructive Methods. Algebra and Applications 20. Springer, Dordrecht (2015). DOI 10.1007/978-94-017-9944-7 | MR 3408454 | Zbl 1327.13001
[11] Lombardi, H., Yengui, I.: Suslin's algorithms for reduction of unimodular rows. J. Symb. Comput. 39 (2005), 707-717. DOI 10.1016/j.jsc.2005.01.004 | MR 2168615 | Zbl 1120.13034
[12] Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Universitext. Springer, New York (1988). DOI 10.1007/978-1-4419-8640-5 | MR 0919949 | Zbl 0725.03044
[13] Roitman, M.: On stably extended projective modules over polynomial rings. Proc. Am. Math. Soc. 97 (1986), 585-589. DOI 10.1090/S0002-9939-1986-0845969-9 | MR 0845969 | Zbl 0595.13009
[14] Suslin, A. A.: On the structure of the special linear group over polynomial rings. Math. USSR, Izv. 11 (1977), 221-238. DOI 10.1070/IM1977v011n02ABEH001709 | MR 0472792 | Zbl 0378.13002
[15] Yengui, I.: Making the use of maximal ideals constructive. Theor. Comput. Sci. 392 (2008), 174-178. DOI 10.1016/j.tcs.2007.10.011 | MR 2394992 | Zbl 1141.13303
[16] Yengui, I.: The Hermite ring conjecture in dimension one. J. Algebra 320 (2008), 437-441. DOI 10.1016/j.jalgebra.2008.02.007 | MR 2417998 | Zbl 1151.13009
[17] Yengui, I.: Constructive Commutative Algebra: Projective Modules over Polynomial Rings and Dynamical Gröbner Bases. Lecture Notes in Mathematics 2138. Springer, Cham (2015). DOI 10.1007/978-3-319-19494-3 | MR 3409062 | Zbl 1360.13002
Partner of
EuDML logo