[2] Bauer, S., Pauly, D.:
On Korn's first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in $\mathbb{R}^N$. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188.
DOI 10.1007/s11565-016-0247-x |
MR 3570353 |
Zbl 1364.46028
[3] Veiga, H. Beirão da:
Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9 (2004), 1079-1114.
MR 2098066 |
Zbl 1103.35084
[4] Veiga, H. Beirão da:
On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions. Commun. Pure Appl. Math. 58 (2005), 552-577.
DOI 10.1002/cpa.20036 |
MR 2119869 |
Zbl 1075.35045
[5] Bögelein, V., Duzaar, F., Habermann, J., Scheven, C.:
Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients. Adv. Calc. Var. 5 (2012), 1-57.
DOI 10.1515/acv.2011.009 |
MR 2879566 |
Zbl 1238.35095
[8] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.:
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), 2756-2801.
DOI 10.1137/110830289 |
MR 3023393 |
Zbl 1256.35074
[10] Chen, P., Xiao, Y., Zhang, H.:
Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition. Math. Methods Appl. Sci. 40 (2017), 5925-5932.
DOI 10.1002/mma.4443 |
MR 3713338 |
Zbl 1390.35226
[15] Diening, L., Málek, J., Steinhauer, M.:
On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232.
DOI 10.1051/cocv:2007049 |
MR 2394508 |
Zbl 1143.35037
[27] Ladyzhenskaya, O. A.:
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969).
MR 0254401 |
Zbl 0184.52603
[29] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[31] Malý, J., Ziemer, W. P.:
Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997).
DOI 10.1090/surv/051 |
MR 1461542 |
Zbl 0882.35001
[32] Neustupa, J., Penel, P.:
On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier slip boundary conditions. Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages.
DOI 10.1155/2018/4617020 |
MR 3773415 |
Zbl 1406.35236
[33] Rădulescu, D. V., Repovš, D. D.:
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015).
DOI 10.1201/b18601 |
MR 3379920 |
Zbl 1343.35003
[37] Sin, C.:
The existence of weak solutions for steady flow of electrorheological fluids with nonhomogeneous Dirichlet boundary condition. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162.
DOI 10.1016/j.na.2017.06.014 |
MR 3695973 |
Zbl 1375.35400
[40] Solonnikov, V. A., Scadilov, V. E.:
On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210.
MR 0172014 |
Zbl 0313.35063