Previous |  Up |  Next

Article

Keywords:
Kirchhoff equation; reaction-diffusion equation; variable exponent; global solution
Summary:
We consider a class of Kirchhoff type reaction-diffusion equations with variable exponents and source terms \begin {equation*} u_{t}-M\biggl (\int _\Omega \vert \nabla u \vert ^{2} {\rm d}x\bigg ) \Delta u+ \vert u \vert ^{m(x) -2}u_{t}= \vert u \vert ^{r(x) -2}u. \end {equation*} We prove with suitable assumptions on the variable exponents $r( {\cdot }),$ $m({\cdot })$ the global existence of the solution and a stability result using potential and Nihari's functionals with small positive initial energy, the stability being based on Komornik's inequality.
References:
[1] Antontsev, S., Shmarev, S.: Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up. Atlantis Studies in Differential Equations 4. Springer, Berlin (2015). DOI 10.2991/978-94-6239-112-3 | MR 3328376 | Zbl 1410.35001
[2] Benaissa, A., Messaoudi, S. A.: Blow-up of solutions for Kirchhoff equation of $q$-Laplacian type with nonlinear dissipation. Colloq. Math. 94 (2002), 103-109. DOI 10.4064/cm94-1-8 | MR 1930205 | Zbl 1090.35122
[3] Chen, H., Liu, G.: Global existence, uniform decay and exponential growth for a class of semi-linear wave equations with strong damping. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 41-58. DOI 10.1016/s0252-9602(12)60193-3 | MR 3003742 | Zbl 1289.35202
[4] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[5] Fu, Y., Xiang, M.: Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl. Anal. 95 (2016), 524-544. DOI 10.1080/00036811.2015.1022153 | MR 3440345 | Zbl 1334.35079
[6] Gao, Q., Li, F., Wang, Y.: Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation. Cent. Eur. J. Math. 9 (2011), 686-698. DOI 10.2478/s11533-010-0096-2 | MR 2784038 | Zbl 1233.35145
[7] Ghegal, S., Hamchi, I., Messaoudi, S. A.: Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities. Appl. Anal. 99 (2020), 1333-1343. DOI 10.1080/00036811.2018.1530760 | MR 4097821 | Zbl 1439.35333
[8] Ghisi, M., Gobbino, M.: Hyperbolic-parabolic singular perturbation for middly degenerate Kirchhoff equations: Time-decay estimates. J. Differ. Equations 245 (2008), 2979-3007. DOI 10.1016/j.jde.2008.04.017 | MR 2454809 | Zbl 1162.35008
[9] Han, Y., Li, Q.: Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75 (2018), 3283-3297. DOI 10.1016/j.camwa.2018.01.047 | MR 3785559 | Zbl 1409.35143
[10] Jiang, Z., Zheng, S., Song, X.: Blow-up analysis for a nonlinear diffusion equation with nonlinear boundary conditions. Appl. Math. Lett. 17 (2004), 193-199. DOI 10.1016/S0893-9659(04)90032-8 | MR 2034767 | Zbl 1056.35087
[11] Kirchhoff, G.: Vorlesungen über mathematische Physik. 1. Band: Mechanik. Teubner, Leipzig (1883), German.
[12] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. Wiley, Chichester (1994). MR 1359765 | Zbl 0937.93003
[13] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+{\cal F}(u)$. Trans. Am. Math. Soc. 192 (1974), 1-21. DOI 10.1090/S0002-9947-1974-0344697-2 | MR 0344697 | Zbl 0288.35003
[14] Levine, H. A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5 (1974), 138-146. DOI 10.1137/0505015 | MR 0399682 | Zbl 0243.35069
[15] Li, H.: Blow-up of solutions to a $p$-Kirchhoff-type parabolic equation with general nonlinearity. J. Dyn. Control Syst. 26 (2020), 383-392. DOI 10.1007/s10883-019-09463-4 | MR 4068420 | Zbl 1445.35206
[16] Li, J., Han, Y.: Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation. Math. Model. Anal. 24 (2019), 195-217. DOI 10.3846/mma.2019.014 | MR 3917481 | Zbl 07394651
[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Gauthier-Villars, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[18] Messaoudi, S. A., Talahmeh, A. A.: Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities. Math. Methods Appl. Sci. 40 (2017), 6976-6986. DOI 10.1002/mma.4505 | MR 3742108 | Zbl 1397.35042
[19] Messaoudi, S. A., Talahmeh, A. A.: Blow up in a semilinear pseudo-parabolic equation with variable exponents. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 65 (2019), 311-326. DOI 10.1007/s11565-019-00326-1 | MR 4026426 | Zbl 1429.35036
[20] Messaoudi, S. A., Talahmeh, A. A., Al-Smail, J. H.: Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 74 (2017), 3024-3041. DOI 10.1016/j.camwa.2017.07.048 | MR 3725935 | Zbl 1415.35061
[21] Ono, K.: Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equations 137 (1997), 273-301. DOI 10.1006/jdeq.1997.3263 | MR 1456598 | Zbl 0879.35110
[22] Ouaoua, A., Maouni, M.: Blow-up, exponential growth of solution for a nonlinear parabolic equation with $p(x)$-Laplacian. Int. J. Anal. Appl. 17 (2019), 620-629. DOI 10.28924/2291-8639-17-2019-620 | Zbl 1438.35226
[23] Polat, N.: Blow up of solution for a nonlinear reaction diffusion equation with multiple nonlinearities. Int. J. Sci. Technol. 2 (2007), 123-128. MR 2372361
[24] Vitillaro, E.: Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149 (1999), 155-182. DOI 10.1007/s002050050171 | MR 1719145 | Zbl 0934.35101
[25] Wu, S. T., Tsai, L.-Y.: Blow-up solutions for some non-linear wave equations of Kirchhoff type with some dissipation. Nonlinear Anal., Theory Methods Appl., Ser. A 65 (2006), 243-264. DOI 10.1016/j.na.2004.11.023 | MR 2228427 | Zbl 1151.35052
[26] Zheng, S.: Nonlinear Evolution Equations. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004). DOI 10.1201/9780203492222 | MR 2088362 | Zbl 1085.47058
Partner of
EuDML logo