Previous |  Up |  Next

Article

Keywords:
bornology; coarse space; selector
Summary:
Given a coarse space $(X, \mathcal{E})$ with the bornology $\mathcal B$ of bounded subsets, we extend the coarse structure $\mathcal E$ from $X\times X$ to the natural coarse structure on $(\mathcal B \backslash \lbrace \emptyset\rbrace) \times (\mathcal B \backslash \lbrace \emptyset\rbrace)$ and say that a macro-uniform mapping $f\colon (\mathcal B \backslash \lbrace \emptyset\rbrace)\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal{E})$ if $f(A)\in A$ for each $A\in \mathcal B\setminus \lbrace\emptyset\rbrace$ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal{E})$ admits a selector if and only if $(X, \mathcal{E})$ admits a 2-selector if and only if there exists a linear order ``$\leq$" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\leq b \}$ is a base for the bornology $\mathcal B$.
References:
[1] Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M.: Selections and suborderability. Fund. Math. 175 (2002), no. 1, 1–33. MR 1971236 | Zbl 1019.54014
[2] Dikranjan D., Protasov I., Protasova K., Zava N.: Balleans, hyperballeans and ideals. Appl. Gen. Topology 2 (2019), 431–447. DOI 10.4995/agt.2019.11645 | MR 4019581
[3] Dikranjan D., Protasov I., Zava N.: Hyperballeans of groups. Topology Appl. 263 (2019), 172–198. DOI 10.1016/j.topol.2019.05.019 | MR 3961119
[4] Engelking R., Health R. W., Michael E.: Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150–158. DOI 10.1007/BF01425452 | MR 0244959
[5] de la Harpe P.: Topics in Geometric Group Theory. Chicago Lectures in Mathematics, The University Chicago Press, Chicago, 2000. MR 1786869
[6] van Mill J., Pelant J., Pol R.: Selections that characterize topological completeness. Fund. Math. 149 (1996), no. 2, 127–141. DOI 10.4064/fm-149-2-127-141 | MR 1376668
[7] van Mill J., Wattel E.: Selections and orderability. Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. DOI 10.1090/S0002-9939-1981-0627702-4 | MR 0627702
[8] Protasov I., Banakh T.: Ball Structures and Colorings of Graphs and Groups. Mathematical Studies Monograph Series, 11, VNTL Publishers, L'viv, 2003. MR 2392704 | Zbl 1147.05033
[9] Protasov I., Protasova K.: On hyperballeans of bounded geometry. Eur. J. Math. 4 (2018), no. 4, 1515–1520. DOI 10.1007/s40879-018-0236-y | MR 3866708
[10] Protasov I., Protasova K.: The normality of macrocubes and hyperballeans. Eur. J. Math. 7 (2021), no. 3, 1274–1279. DOI 10.1007/s40879-020-00440-x | MR 4289511
[11] Protasov I., Zarichnyi M.: General Asymptology. Mathematical Studies Monograph Series, 12, VNTL Publishers, L'viv, 2007. MR 2406623
[12] Przesławski K., Yost D.: Continuity properties of selectors in Michael's theorem. Michigan Math. J. 36 (1989), no. 1, 113–134. DOI 10.1307/mmj/1029003885 | MR 0989940
[13] Roe J.: Lectures on Coarse Geometry. University Lecture Series, 31, American Mathematical Society, Providence, 2003. DOI 10.1090/ulect/031/10 | MR 2007488 | Zbl 1042.53027
Partner of
EuDML logo