[1] Brunner N.:
Lindelöf Räume und Auswahlaxiom. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 119 (1982), no. 9, 161–165 (German, English summary).
MR 0728812
[6] Herrlich H.:
Products of Lindelöf $T_{2}$-spaces are Lindelöf – in some models of ZF. Comment. Math. Univ. Carolin. 43 (2002), no. 2, 319–333.
MR 1922130
[8] Ikeda Y.:
Čech-completeness and countably subcompactness. Topology Proc. 14 (1989), no. 1, 75–87.
MR 1081121
[9] Keremedis K.:
On the relative strength of forms of compactness of metric spaces and their countable productivity in ZF. Topology Appl. 159 (2012), no. 16, 3396–3403.
DOI 10.1016/j.topol.2012.08.003 |
MR 2964853
[10] Keremedis K.:
On sequential compactness and related notions of compactness of metric spaces in ZF. Bull. Pol. Acad. Sci. Math. 64 (2016), no. 1, 29–46.
DOI 10.4064/ba8087-12-2016 |
MR 3550611
[14] Mardešić S., Papić P.:
Sur les espaces dont toute transformation réelle continue est bornée. Hrvatsko Prirod. Društvo. Glasnik Mat.-Fiz. Astr. Ser. II. 10 (1955), 225–232 (French, Serbo-Croatian summary).
MR 0080292
[16] Willard S.:
General Topology. Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, 1970.
MR 0264581 |
Zbl 1052.54001