[2] Albrecht U., Breaz S., Schultz P.:
Functorial properties of Hom and Ext. in: Groups and Model Theory, Contemp. Math., 576, Amer. Math. Soc., Providence, 2012, pages 1–15.
MR 2962871
[5] Arnold D. M., Murley C. E.:
Abelian groups, $A$, such that $ Hom(A, - - -)$ preserves direct sums of copies of $A$. Pacific J. Math. 56 (1975), no. 1, 7–20.
DOI 10.2140/pjm.1975.56.7 |
MR 0376901
[6] Bass H.:
Algebraic $K$-theory. Mathematics Lecture Note Series, W. A. Benjamin, New York, 1968.
MR 0249491
[12] Dvořák J.:
On products of self-small abelian groups. Stud. Univ. Babeş–Bolyai Math. 60 (2015), no. 1, 13–17.
MR 3335780
[13] Dvořák J., Žemlička J.:
Autocompact objects of Ab5 categories. Theory Appl. Categ. 37 (2021), Paper No. 30, 979–995.
MR 4326106
[14] Fuchs L.:
Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics, 36, Academic Press, New York, 1970.
MR 0255673 |
Zbl 0338.20063
[15] Fuchs L.:
Infinite Abelian Groups. Vol. II. Pure and Applied Mathematics, 36-II, Academic Press, New York, 1973.
MR 0349869
[16] Gómez Pardo J. L., Militaru G., Năstăsescu C.:
When is $\mathrm{HOM}_R(M,-)$ equal to $\mathrm{Hom}_R(M,-)$ in the category $R-gr$?. Comm. Algebra 22 (1994), no. 8, 3171–3181.
MR 1272380
[19] Rentschler R.:
Sur les modules $M$ tels que $ Hom(M,-)$ commute avec les sommes directes. C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A930–A933 (French).
MR 0241466