[1] Amdahl, G. M.:
Validity of the single processor approach to achieving large scale computing capabilities. Proceedings of the Conference AFIPS Joint Computer Conference, Atlantic City, New Jersey, USA ACM, New York (1967), 483-485.
DOI 10.1145/1465482.1465560
[5] Bertsekas, D. P., Tsitsiklis, J. N.:
Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989).
MR 3587745 |
Zbl 0743.65107
[11] Frommer, A., Schwandt, H., Szyld, D. B.:
Asynchronous weighted additive Schwarz methods. ETNA, Electron. Trans. Numer. Anal. 5 (1997), 48-61.
MR 1460886 |
Zbl 0890.65027
[13] Gbikpi-Benissan, G., Magoulès, F.:
Protocol-free asynchronous iterations termination. Adv. Eng. Softw. 146 (2020), Article ID 102827, 9 pages.
DOI 10.1016/j.advengsoft.2020.102827
[14] Krivoshapko, S. N., Rynkovskaya, M.:
Five types of ruled helical surfaces for helical conveyers, support anchors and screws. MATEC Web Conf. 95 (2017), Article ID 06002, 5 pages.
DOI 10.1051/matecconf/20179506002
[16] Magoulès, F., Gbikpi-Benissan, G.:
Distributed convergence detection based on global residual error under asynchronous iterations. IEEE Trans. Parallel Distrib. Syst. 29 (2018), 819-829.
DOI 10.1109/TPDS.2017.2780856
[17] Magoulès, F., Gbikpi-Benissan, G.:
JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations. Adv. Eng. Softw. 119 (2018), 116-133.
DOI 10.1016/j.advengsoft.2018.01.009
[22] Spiteri, P., Miellou, J.-C., Baz, D. El: Asynchronous Schwarz alternating method with flexible communication for the obstacle problem. Rés. Syst. Répartis Calculateurs Parallèles 13 (2001), 47-66.