[1] Aydi, H., Bota, M., Karapinar, E., S.Moradi:
A common fixed point for weak $\phi$-contractions on $b$-metric spaces. Fixed Point Theory 13 (2012), 337-346.
MR 3024322
[2] Afshari, H., Atapour, M., Aydi, H.:
Generalized $\alpha-\psi-$Geraghty multivalued mappings on $b$-metric spaces endowed with a graph. J. Appl. Eng. Math. 7 (2017), 248-260.
MR 3741903
[3] Aydi, H., R.Banković, I.Mitrović, Nazam, M.:
Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. (2018), 4745764.
DOI |
MR 3827845
[4] Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S.:
$\alpha$-Contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 9 (2018), 47-60.
MR 3896745
[5] Banach, S.:
Sur les opérations dans les ensembles abstraits et leur application aux équations intégrals. Fund. Math. 3 (1922), 133-181.
DOI |
MR 3949898
[6] Bakhtin, I. A.:
The contraction mapping principle in almost metric spaces. Funct. Anal. 30 (1989), 26-37.
DOI |
MR 1204890
[7] Boriceanu, M., Petrusel., A., Rus, I. A.:
Fixed point theorems for some multivalued generalized contraction in b-metric spaces. Int. J. Math. Statist. 6 (2010), 65-76.
MR 2520394
[8] Czerwik, S.:
Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrava 1 (1993), 5-11.
DOI |
MR 1250922
[9] Dowling, T. E.: Introduction to Mathematical Economics. Schaum's Outline Series, 2001.
[10] George, A., Veeramani, P.:
On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 395-399.
DOI |
MR 1289545 |
Zbl 0843.54014
[11] Gopal, D.:
Contributions to fixed point theory of fuzzy contractive mappings. Adv. Metric Fixed Point Theory Appl. (2021), 241-282.
DOI |
MR 4306467
[12] Gopal, D., T.Došenović:
Fixed point theory for fuzzy contractive mappings. Metric Struct. Fixed Point Theory (2021), 199-244.
DOI |
MR 4394399
[13] Gopal, D., Vetro, C.:
Some new fixed point theorems in fuzzy metric spaces. Iranian J. Fuzzy Systems 11(2014), 3, 95-107.
DOI |
MR 3237493
[15] Hao, Y., Guan, H.:
On some common fixed point results for weakly contraction mappings with application. J. Funct. Spaces 2021 (2021), 5573983.
DOI |
MR 4243986
[16] Kim, J. K.:
Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces. J. Comput. Anal. Appl. 22 (2017), 336-345.
MR 3643679
[17] Kramosil, I., Michálek, J.:
Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334.
DOI |
MR 0410633
[18] Mehmood, F., Ali, R., Ionescu, C., Kamran, T.:
Extended fuzzy b-metric spaces. J. Math. Anal. 8 (2017), 124-131.
DOI |
MR 3750093
[19] Melliani, S., Moussaoui, A.: Fixed point theorem using a new class of fuzzy contractive mappings. J. Univer. Math. 1 (2018), 2, 148-154.
[20] Mihet, D.:
Fuzzy $\psi$-contractive mappings in non-archimedean fuzzy metric spaces. Fuzzy Sets Systems 159 (2008), 6, 739-744.
DOI |
MR 2410532
[21] Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T.:
Controlled metric type spaces and the related contraction principle. Math. Molecul. Divers. Preservat. Int. 6 (2018), 1-7.
DOI
[22] Nadaban, S.:
Fuzzy b-metric spaces. Int. J. Comput. Commun. Control 11 (2016), 273-281.
DOI
[23] Nasr, H. S., Imdad, M., Khan, I., Hasanuzzaman, M.:
Fuzzy $\Theta_f$-contractive mappings and their fixed points with applications. J. Intell. Fuzzy Systems (2020), 1-10.
DOI
[24] Sezen, M. S.:
Controlled fuzzy metric spaces and some related fixed point results. Numer. Part. Different. Equations (2020), 1-11.
DOI |
MR 4191089
[25] Shukla, S., Gopal, D., Sintunavarat, W.:
A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets Systems 350 (2018), 85-94.
DOI |
MR 3852589
[27] Wardowski, D.:
Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Systems 222 (2013), 108-114.
DOI |
MR 3053895