[1] Abdallah, L., Haddou, M., Migot, T.:
Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327 (2018), 196-207 \99999DOI99999 10.1016/j.cam.2017.06.019 .
DOI 10.1016/j.cam.2017.06.019 |
MR 3683155 |
Zbl 1370.90297
[3] Bai, Z.-Z., Golub, G. H., Ng, M. K.:
Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24 (2003), 603-626 \99999DOI99999 10.1137/S0895479801395458 .
MR 1972670 |
Zbl 1036.65032
[6] Beik, F. P. A., Movahed, F. Saberi, Ahmadi-Asl, S.:
On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numer. Linear Algebra Appl. 23 (2016), 444-466.
DOI 10.1002/nla.2033 |
MR 3484355 |
Zbl 1413.65128
[19] Mangasarian, O. L., Meyer, R. R.:
Absolute value equations. Linear Algebra Appl. 419 (2006), 359-367 \99999DOI99999 10.1016/j.laa.2006.05.004 .
MR 2277975 |
Zbl 1172.15302
[20] Mansoori, A., Erfanian, M.:
A dynamic model to solve the absolute value equations. J. Comput. Appl. Math. 333 (2018), 28-35 \99999DOI99999 10.1016/j.cam.2017.09.032 .
MR 3739937 |
Zbl 1380.65107
[21] Noor, M. A., Iqbal, J., Noor, K. I., Al-Said, E.:
On an iterative method for solving absolute value equations. Optim. Lett. 6 (2012), 1027-1033 \99999DOI99999 10.1007/s11590-011-0332-0 .
MR 2925637 |
Zbl 1254.90149
[22] Ren, H., Wang, X., Tang, X.-B., Wang, T.:
The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Comput. Math. Appl. 77 (2019), 1071-1081 \99999DOI99999 10.1016/j.camwa.2018.10.040 .
MR 3913650 |
Zbl 1442.65112
[23] Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.:
An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8 (2014), 35-44 \99999DOI99999 10.1007/s11590-012-0560-y .
MR 3152897 |
Zbl 1316.90052
[25] Shams, N. N., Jahromi, A. Fakharzadeh, Beik, F. P. A.:
Iterative schemes induced by block splittings for solving absolute value equations. Filomat 34 (2020), 4171-4188.
DOI 10.2298/FIL2012171S |
MR 4290841
[27] Wang, X., Li, X., Zhang, L.-H., Li, R.-C.:
An efficient numerical method for the symmetric positive definite second-order cone linear complementarity problem. J. Sci. Comput. 79 (2019), 1608-1629 \99999DOI99999 10.1007/s10915-019-00907-4 .
MR 3946470 |
Zbl 1418.90265
[28] Wu, S.-L., Li, C.-X.:
The unique solution of the absolute value equations. Appl. Math. Lett. 76 (2018), 195-200 \99999DOI99999 10.1016/j.aml.2017.08.012 .
MR 3713516 |
Zbl 1397.90381
[30] Yong, L.:
Iteration method for absolute value equation and applications in two-point boundary value problem of linear differential equation. J. Interdiscip. Math. 18 (2015), 355-374.
DOI 10.1080/09720502.2014.996022
[31] Young, D. M.:
Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. Academic Press, New York (1971),\99999DOI99999 10.1016/c2013-0-11733-3 .
MR 0305568 |
Zbl 0231.65034