Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
free boundary; predator-prey model; spreading-vanishing dichotomy; spreading speed
Summary:
We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.
References:
[1] Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differential Equations and Related Topics Lecture Notes in Mathematics 466. Springer, Berlin (1975), 5-49. DOI 10.1007/BFb0070595 | MR 0427837 | Zbl 0325.35050
[2] Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30 (1978), 33-76. DOI 10.1016/0001-8708(78)90130-5 | MR 511740 | Zbl 0407.92014
[3] Bunting, G., Du, Y., Krakowski, K.: Spreading speed revisited: Analysis of a free boundary model. Netw. Heterog. Media 7 (2012), 583-603. DOI 10.3934/nhm.2012.7.583 | MR 3004677 | Zbl 1302.35194
[4] Cantrell, R. S., Cosner, C.: Spatial Ecology Via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Chichester (2003). DOI 10.1002/0470871296 | MR 2191264 | Zbl 1087.92058
[5] Cheng, H., Yuan, R.: The spreading property for a prey-predator reaction-diffusion system with fractional diffusion. Frac. Calc. Appl. Anal. 18 (2015), 565-579. DOI 10.1515/fca-2015-0035 | MR 3351488 | Zbl 06441500
[6] Cheng, H., Yuan, R.: Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete Contin. Dyn. Syst. 37 (2017), 5422-5454. DOI 10.3934/dcds.2017236 | MR 3668369 | Zbl 1368.35063
[7] Cheng, H., Yuan, R.: Traveling waves of some Holling-Tanner predator-prey system with nonlocal diffusion. Appl. Math. Comput. 338 (2018), 12-24. DOI 10.1016/j.amc.2018.04.049 | MR 3843677 | Zbl 1427.35117
[8] Du, Y., Guo, Z.: Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. II. J. Differ. Equations 250 (2011), 4336-4366. DOI 10.1016/j.jde.2011.02.011 | MR 2793257 | Zbl 1222.35096
[9] Du, Y., Guo, Z.: The Stefan problem for the Fisher-KPP equation. J. Differ. Equations 253 (2012), 996-1035. DOI 10.1016/j.jde.2012.04.014 | MR 2922661 | Zbl 1257.35110
[10] Du, Y., Guo, Z., Peng, R.: A diffusive logistic model with a free boundary in time-periodic environment. J. Funct. Anal. 265 (2013), 2089-2142. DOI 10.1016/j.jfa.2013.07.016 | MR 3084498 | Zbl 1282.35419
[11] Du, Y., Hsu, S.-B.: A diffusive predator-prey model in heterogeneous environment. J. Differ. Equations 203 (2004), 331-364. DOI 10.1016/j.jde.2004.05.010 | MR 2073690 | Zbl 1330.35467
[12] Du, Y., Lin, Z.: Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42 (2010), 377-405. DOI 10.1137/090771089 | MR 2607347 | Zbl 1219.35373
[13] Du, Y., Lin, Z.: The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 3105-3132. DOI 10.3934/dcdsb.2014.19.3105 | MR 3327894 | Zbl 1310.35245
[14] Du, Y., Lou, B.: Spreading and vanishing in nonlinear diffusion problems with free boundaries. J. Eur. Math. Soc. (JEMS) 17 (2015), 2673-2724. DOI 10.4171/JEMS/568 | MR 3420519 | Zbl 1331.35399
[15] Ducrot, A.: Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system. J. Math. Pures Appl. (9) 100 (2013), 1-15. DOI 10.1016/j.matpur.2012.10.009 | MR 3057299 | Zbl 1284.35066
[16] Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugenics, London 7 (1937), 355-369 \99999JFM99999 63.1111.04. DOI 10.1111/j.1469-1809.1937.tb02153.x
[17] Guo, J.-S., Wu, C.-H.: On a free boundary problem for a two-species weak competition system. J. Dyn. Differ. Equations 24 (2012), 873-895. DOI 10.1007/s10884-012-9267-0 | MR 3000608 | Zbl 1263.35132
[18] Hilhorst, D., Iida, M., Mimura, M., Ninomiya, H.: A competition-diffusion system approximation to the classical two-phase Stefan problem. Japan J. Ind. Appl. Math. 18 (2001), 161-180. DOI 10.1007/BF03168569 | MR 1842906 | Zbl 0980.35178
[19] Kaneko, Y., Yamada, Y.: A free boundary problem for a reaction-diffusion equation appearing in ecology. Adv. Math. Sci. Appl. 21 (2011), 467-492. MR 2953128 | Zbl 1254.35248
[20] Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14 (2001), 697-699. DOI 10.1016/S0893-9659(01)80029-X | MR 1836072 | Zbl 0999.92036
[21] Leslie, P. H., Gower, J. C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47 (1960), 219-234. DOI 10.1093/biomet/47.3-4.219 | MR 0122603 | Zbl 0103.12502
[22] Lieberman, G. M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996). DOI 10.1142/3302 | MR 1465184 | Zbl 0884.35001
[23] Lin, Z.: A free boundary problem for a predator-prey model. Nonlinearity 20 (2007), 1883-1892. DOI 10.1088/0951-7715/20/8/004 | MR 2343682 | Zbl 1126.35111
[24] Liu, Y., Guo, Z., Smaily, M. E., Wang, L.: A Leslie-Gower predator-prey model with a free boundary. Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 2063-2084. DOI 10.3934/dcdss.2019133 | MR 3984737 | Zbl 1420.35130
[25] Mimura, M., Yamada, Y., Yotsutani, S.: A free boundary problem in ecology. Japan J. Appl. Math. 2 (1985), 151-186. DOI 10.1007/BF03167042 | MR 0839323 | Zbl 0593.92019
[26] Mimura, M., Yamada, Y., Yotsutani, S.: Stability analysis for free boundary problems in ecology. Hiroshima Math. J. 16 (1986), 477-498. DOI 10.32917/hmj/1206130304 | MR 0867576 | Zbl 0617.35135
[27] Mimura, M., Yamada, Y., Yotsutani, S.: Free boundary problems for some reaction-diffusion equations. Hiroshima Math. J. 17 (1987), 241-280. DOI 10.32917/hmj/1206130066 | MR 0909614 | Zbl 0649.35089
[28] Peng, R., Zhao, X.-Q.: The diffusive logistic model with a free boundary and seasonal succession. Discrete Contin. Dyn. Syst. 33 (2013), 2007-2031. DOI 10.3934/dcds.2013.33.2007 | MR 3002741 | Zbl 1273.35327
[29] Wang, M.: On some free boundary problems of the prey-predator model. J. Differ. Equations 256 (2014), 3365-3394. DOI 10.1016/j.jde.2014.02.013 | MR 3177899 | Zbl 1317.35110
[30] Wang, M., Zhao, J.: A free boundary problem for the predator-prey model with double free boundaries. J. Dyn. Differ. Equations 29 (2017), 957-979. DOI 10.1007/s10884-015-9503-5 | MR 3694817 | Zbl 1373.35164
[31] Zhao, J., Wang, M.: A free boundary problem of a predator-prey model with higher dimension and heterogeneous environment. Nonlinear Anal., Real World Appl. 16 (2014), 250-263. DOI 10.1016/j.nonrwa.2013.10.003 | MR 3123816 | Zbl 1296.35220
Partner of
EuDML logo