[1] Azizbayov, E. I.:
The nonlocal inverse problem of the identification of the lowest coefficient and the right-hand side in a second-order parabolic equation with integral conditions. Bound. Value Probl. 2019 (2019), Article ID 11, 19 pages.
DOI 10.1186/s13661-019-1126-z |
MR 3900856
[3] Buda, V., Chegis, R., Sapagovas, M.:
A model of multiple diffusion from a limited source. Differ. Uravn. Primen. 38 (1986), 9-14 Russian.
Zbl 0621.76097
[9] Staelen, R. H. De, Slodička, M.:
Reconstruction of a convolution kernel in a semilinear parabolic problem based on a global measurement. Nonlinear Anal., Theory Methods Appl., Ser. A 112 (2015), 43-57.
DOI 10.1016/j.na.2014.09.002 |
MR 3274282 |
Zbl 1302.35435
[11] Glotov, D., Hames, W. E., Meir, A. J., Ngoma, S.:
An inverse diffusion coefficient problem for a parabolic equation with integral constraint. Int. J. Numer. Anal. Model. 15 (2018), 552-563.
MR 3789578 |
Zbl 1395.35103
[12] Kačur, J.:
Method of Rothe in Evolution Equations. Teubner Texte zur Mathematik 80. Teubner, Leipzig (1985).
MR 0834176 |
Zbl 0582.65084
[13] Kozhanov, A. I.:
On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations. Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 30 (2004), 63-69 Russian.
DOI 10.14498/vsgtu308 |
MR 2766545
[14] Merazga, N., Bouziani, A.:
On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 604-623.
DOI 10.1016/j.na.2005.12.005 |
MR 2274872 |
Zbl 1105.35044
[16] Prilepko, A. I., Orlovsky, D. G., Vasin, I. A.:
Methods for Solving Inverse Problems in Mathematical Physics. Pure and Applied Mathematics, Marcel Dekker 231. Marcel Dekker, New York (2000).
DOI 10.1201/9781482292985 |
MR 1748236 |
Zbl 0947.35173
[17] Rektorys, K.:
The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) 4. Reidel Publishing, Dordrecht (1982).
MR 0689712 |
Zbl 0505.65029
[18] Showalter, R. E.:
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs 49. American Mathematical Society, Providence (1997).
DOI 10.1090/surv/049 |
MR 1422252 |
Zbl 0870.35004
[21] Bockstal, K. Van, Staelen, R. H. De, Slodička, M.:
Identification of a memory kernel in a semilinear integrodifferential parabolic problem with applications in heat conduction with memory. J. Comput. Appl. Math. 289 (2015), 196-207.
DOI 10.1016/j.cam.2015.02.019 |
MR 3350770 |
Zbl 1319.35305