Previous |  Up |  Next

Article

Title: Porous media equation on locally finite graphs (English)
Author: Ma, Li
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 177-187
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs. (English)
Keyword: Bochner formula
Keyword: heat equation
Keyword: global solution
Keyword: stochastic completeness
Keyword: porous-media equation
Keyword: McKean type estimate
MSC: 05C50
MSC: 35Jxx
MSC: 53Cxx
MSC: 58J35
MSC: 68R10
idZBL: Zbl 07584089
idMR: MR4483052
DOI: 10.5817/AM2022-3-177
.
Date available: 2022-09-01T10:20:55Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150663
.
Reference: [1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs.J. Differential Geom. 99 (3) (2015), 359–405. MR 3316971, 10.4310/jdg/1424880980
Reference: [2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative.Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. MR 1129796, 10.1007/BF02566664
Reference: [3] Chung, F.R.K.: Spectral graph theory.CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. MR 1421568
Reference: [4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions.J. Spectr. Theory 2 (4) (2012), 397–432. MR 2947294, 10.4171/JST/35
Reference: [5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs.arXiv:1411. 5087v4. MR 4036571
Reference: [6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps.Math. Ann. 345 (2009), 819–834. MR 2545867, 10.1007/s00208-009-0377-x
Reference: [7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation.Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. MR 2662456, 10.1051/mmnp/20105409
Reference: [8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap.arXiv:1512.02677, 2015. MR 4545901
Reference: [9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs.Math. Res. Lett. 17 (2010), 343–356. MR 2644381, 10.4310/MRL.2010.v17.n2.a13
Reference: [10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs.Nonlinear Anal. 170 (2018), 226–237. MR 3765562
Reference: [11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs.Sci. China Math. 56 (4) (2013), 771–776. MR 3034839, 10.1007/s11425-013-4577-1
Reference: [12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation.Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. MR 3758379, 10.1016/j.cnsns.2017.11.002
Reference: [13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph.J. Math. Anal. Appl. 370 (1) (2010), 146–158. MR 2651136, 10.1016/j.jmaa.2010.04.044
Reference: [14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs.Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. MR 2542093, 10.1512/iumj.2009.58.3575
.

Files

Files Size Format View
ArchMathRetro_058-2022-3_5.pdf 431.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo