Title:
|
Porous media equation on locally finite graphs (English) |
Author:
|
Ma, Li |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
177-187 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs. (English) |
Keyword:
|
Bochner formula |
Keyword:
|
heat equation |
Keyword:
|
global solution |
Keyword:
|
stochastic completeness |
Keyword:
|
porous-media equation |
Keyword:
|
McKean type estimate |
MSC:
|
05C50 |
MSC:
|
35Jxx |
MSC:
|
53Cxx |
MSC:
|
58J35 |
MSC:
|
68R10 |
idZBL:
|
Zbl 07584089 |
idMR:
|
MR4483052 |
DOI:
|
10.5817/AM2022-3-177 |
. |
Date available:
|
2022-09-01T10:20:55Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150663 |
. |
Reference:
|
[1] Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau: Li-Yau inequality on graphs.J. Differential Geom. 99 (3) (2015), 359–405. MR 3316971, 10.4310/jdg/1424880980 |
Reference:
|
[2] Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic-potential alternative.Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. MR 1129796, 10.1007/BF02566664 |
Reference:
|
[3] Chung, F.R.K.: Spectral graph theory.CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. MR 1421568 |
Reference:
|
[4] Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions.J. Spectr. Theory 2 (4) (2012), 397–432. MR 2947294, 10.4171/JST/35 |
Reference:
|
[5] Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau: Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs.arXiv:1411. 5087v4. MR 4036571 |
Reference:
|
[6] Ji, L., Mazzeo, R., Sesum, N.: Ricci flow on surfaces with cusps.Math. Ann. 345 (2009), 819–834. MR 2545867, 10.1007/s00208-009-0377-x |
Reference:
|
[7] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation.Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. MR 2662456, 10.1051/mmnp/20105409 |
Reference:
|
[8] Lin, Y., Liu, S.: Equivalent properties of CD inequality on grap.arXiv:1512.02677, 2015. MR 4545901 |
Reference:
|
[9] Lin, Y., Yau, S.T.: Ricci curvature and eigen-value estimate on locally finite graphs.Math. Res. Lett. 17 (2010), 343–356. MR 2644381, 10.4310/MRL.2010.v17.n2.a13 |
Reference:
|
[10] Ma, L.: Harnack’s inequality and Green’s functions on locally finite graphs.Nonlinear Anal. 170 (2018), 226–237. MR 3765562 |
Reference:
|
[11] Ma, L., Wang, X.Y.: Kato’s inequality and Liouville theorems on locally finite graphs.Sci. China Math. 56 (4) (2013), 771–776. MR 3034839, 10.1007/s11425-013-4577-1 |
Reference:
|
[12] Ma, L., Witt, I.: Discrete Morse flow for the Ricci flow and porous media equation.Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. MR 3758379, 10.1016/j.cnsns.2017.11.002 |
Reference:
|
[13] Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph.J. Math. Anal. Appl. 370 (1) (2010), 146–158. MR 2651136, 10.1016/j.jmaa.2010.04.044 |
Reference:
|
[14] Wojciechowski, R.K.: Heat kernel and essential spectrum of infinite graphs.Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. MR 2542093, 10.1512/iumj.2009.58.3575 |
. |