Previous |  Up |  Next

Article

Keywords:
Lorentzian space forms; complete spacelike hypersurfaces; polynomial volume growth; support functions
Summary:
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
References:
[1] Alías, L.J.: A congruence theorem for compact spacelike surfaces in de Sitter space. Tokyo J. Math. 24 (2001), 107–112. DOI 10.3836/tjm/1255958315 | MR 1844421
[2] Alías, L.J., Brasil Jr., A., Perdomo, O.: A characterization of quadric constant mean curvature hypersurfaces of spheres. J. Geom. Anal. 18 (2008), 687–703. DOI 10.1007/s12220-008-9029-8 | MR 2420759
[3] Alías, L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200 (2021), 1637–1650. MR 4278219
[4] Alías, L.J., Pastor, J.A.: Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space. J. Geom. Phys. 28 (1998), 85–93. DOI 10.1016/S0393-0440(98)00014-X | MR 1653134
[5] Aquino, C.P., de Lima, H.F.: On the Gauss map of complete CMC hypersurfaces in the hyperbolic space. J. Math. Anal. Appl. 386 (2012), 862–869. DOI 10.1016/j.jmaa.2011.08.046 | MR 2834793
[6] Aquino, C.P., de Lima, H.F.: On the geometry of horospheres. Comment. Math. Helv. 89 (2014), 617–629. DOI 10.4171/CMH/329 | MR 3260844
[7] Aquino, C.P., de Lima, H.F.: On the umbilicity of complete constant mean curvature spacelike hypersurfaces. Math. Ann. 360 (2014), 555–569. DOI 10.1007/s00208-014-1049-z | MR 3273637
[8] Aquino, C.P., de Lima, H.F., dos Santos, F.R.: On the quadric CMC spacelike hypersurfaces in Lorentzian space forms. Colloq. Math. 145 (2016), 89–98. MR 3514262
[9] Aquino, C.P., de Lima, H.F., Velásquez, M.A.L.: On the geometry of complete spacelike hypersurfaces in the anti-de Sitter space. Geom. Dedicata 174 (2015), 13–23. DOI 10.1007/s10711-014-0002-3 | MR 3303038
[10] Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. CRC Press, New York, 1996, Second Edition. MR 1384756
[11] Galloway, G.J., Senovilla, J.M.M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension. Classical Quantum Gravity 27 (15) (2010), 10pp., 152002. DOI 10.1088/0264-9381/27/15/152002 | MR 2659235
[12] Hawking, S.W., Ellis, G.F.R.: The large scale structure of spacetime. Cambridge University Press, London-New York, 1973. MR 0424186
[13] Montiel, S.: Uniqueness of spacelike hypersurface of constant mean curvature in foliated spacetimes. Math. Ann. 314 (1999), 529–553. DOI 10.1007/s002080050306 | MR 1704548
[14] O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York, 1983. MR 0719023
[15] Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14 (1965), 57–59. DOI 10.1103/PhysRevLett.14.57 | MR 0172678
[16] Senovilla, J.M.M.: Singularity theorems in general relativity: Achievements and open questions. Einstein and the Changing Worldviews of Physics (Christoph Lehner, Jürgen Renn, Schemmel, Matthias, eds.), Birkhäuser Boston, 2012, pp. 305–316.
Partner of
EuDML logo