Previous |  Up |  Next

Article

Keywords:
amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
Summary:
Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
References:
[1] Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3–56. DOI 10.1216/JCA-2009-1-1-3 | MR 2462381
[2] Azimi, Y.: Linkage property under the amalgamated construction. Comm. Algebra 49 (2021), 3743–3747. DOI 10.1080/00927872.2021.1905823 | MR 4290107
[3] Azimi, Y.: Constructing (non-)Catenarian rings. J. Algebra 597 (2022), 266–274. DOI 10.1016/j.jalgebra.2021.12.015 | MR 4406398
[4] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulay properties under the amalgamated construction. J. Commut. Algebra 10 (4) (2018), 457–474. DOI 10.1216/JCA-2018-10-4-457 | MR 3892143
[5] Azimi, Y., Sahandi, P., Shirmihammadi, N.: Cohen-Macaulayness of amalgamated algebras. Algebr. Represent. Theory 23 (2019), 275–280. DOI 10.1007/s10468-018-09847-3 | MR 4097315
[6] Azimi, Y., Sahandi, P., Shirmohammadi, N.: Prüfer conditions under the amalgamated construction. Comm. Algebra 47 (2019), 2251–2261. DOI 10.1080/00927872.2018.1534120 | MR 3977735
[7] Brodmann, M.P., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Stud. Adv. Math., vol. 136, Cambridge University Press, 2013. MR 3014449
[8] Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, 1998, Rev. ed. MR 1251956
[9] Cuong, N.T., Schenzel, P., Trung, N.V.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 57–73. MR 0517641
[10] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Amalgamated algebras along an ideal. Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco,, 2008, W. de Gruyter Publisher, Berlin, 2009, pp. 155–172. MR 2606283
[11] D’Anna, M., Finocchiaro, C.A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal. J. Pure Appl. Algebra 214 (2010), 1633–1641. DOI 10.1016/j.jpaa.2009.12.008 | MR 2593689
[12] D’Anna, M., Finocchiaro, C.A., Fontana, M.: New algebraic properties of an amalgamated algebra along an ideal. Comm. Algebra 44 (2016), 1836–1851. DOI 10.1080/00927872.2015.1033628 | MR 3490651
[13] D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: the basic properties. J. Algebra Appl. 6 (3) (2007), 443–459. DOI 10.1142/S0219498807002326 | MR 2337762
[14] Lü, R., Tang, Z.: The F-depth of an ideal on a module. Proc. Amer. Math. Soc. 130 (7) (2002), 1905–1912. DOI 10.1090/S0002-9939-01-06269-4 | MR 1896021
[15] Melkersson, L.: Some applications of a criterion for Artinianness of a module. J. Pure Appl. Algebra 101 (1995), 291–303. DOI 10.1016/0022-4049(94)00059-R | MR 1348571
[16] Nagata, M.: Local Rings. Interscience, New York, 1962. MR 0155856
[17] Nhan, L.T.: On generalized regular sequences and the finiteness for associated primes of local cohomology modules. Comm. Algebra 33 (2005), 793–806. DOI 10.1081/AGB-200051137 | MR 2128412
[18] Nhan, L.T., Marcel, M.: Generalized f-modules and the associated primes of local cohomology modules. Comm. Algebra 34 (2006), 863–878. DOI 10.1080/00927870500441676 | MR 2208103
[19] Sahandi, P., Shirmohammadi, N.: Notes on amalgamated duplication of a ring along an ideal. Bull. Iranian Math. Soc. 41 (2015), 749–757. MR 3359900
[20] Sahandi, P., Shirmohammadi, N., Sohrabi, S.: Cohen-Macaulay and Gorenstein properties under the amalgamated construction. Comm. Algebra 44 (2016), 1096–1109. DOI 10.1080/00927872.2014.999928 | MR 3463131
[21] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. Berlin: WEB Deutscher Verlag der Wissenschaften, 1986. MR 0873945
Partner of
EuDML logo