Previous |  Up |  Next

Article

Keywords:
complex power series; boundary behaviour; Baire category
Summary:
We examine the boundary behaviour of the generic power series $f$ with coefficients chosen from a fixed bounded set $\Lambda $ in the sense of Baire category. Notably, we prove that for any open subset $U$ of the unit disk $D$ with a nonreal boundary point on the unit circle, $f(U)$ is a dense set of $\mathbb {C}$. As it is demonstrated, this conclusion does not necessarily hold for arbitrary open sets accumulating to the unit circle. To complement these results, a characterization of coefficient sets having this property is given.
References:
[1] Bolyai János Mathematical Society: Miklós Schweitzer Memorial Competition 2020, Problems and Solutions. Available at \brokenlink{ https://www.bolyai.hu/files/Schweitzer_{2020_megoldasok.pdf}} Hungarian. MR 1162554
[2] Breuer, J., Simon, B.: Natural boundaries and spectral theory. Adv. Math. 226 (2011), 4902-4920. DOI 10.1016/j.aim.2010.12.019 | MR 2775889 | Zbl 1219.30001
[3] Kahane, J.-P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics 5. Cambridge University Press, Cambridge (1985). MR 0833073 | Zbl 0571.60002
[4] Kahane, J.-P.: Baire's category theorem and trigonometric series. J. Anal. Math. 80 (2000), 143-182. DOI 10.1007/BF02791536 | MR 1771526 | Zbl 0961.42001
[5] Kierst, S., Szpilrajn, E.: Sur certaines singularités desfonctions analytiques uniformes. Fundam. Math. French 21 (1933), 276-294. DOI 10.4064/FM-21-1-276-294 | Zbl 0008.07401
[6] Kuratowski, K.: Topology. Vol. 1. Academic Press, New York (1966). DOI 10.1016/C2013-0-11022-7 | MR 0217751 | Zbl 0158.40802
[7] Maga, B., Maga, P.: Random power series near the endpoint of the convergence interval. Publ. Math. 93 (2018), 413-424. DOI 10.5486/PMD.2018.8130 | MR 3875344 | Zbl 1424.60048
Partner of
EuDML logo