[1] Aruna, A. S.:
Non-linear Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source. Pramana 94 (2020), Article ID 153, 10 pages.
DOI 10.1007/s12043-020-02007-7
[3] Chandrasekhar, S.:
Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Clarendon Press, Oxford (1961).
MR 128226 |
Zbl 0142.44103
[5] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.:
Buoyancy Induced Flows and Transport. Springer, Berlin (1988).
Zbl 0699.76001
[7] Hirayama, O., Takaki, R.:
Thermal convection of fluid with temperature-dependent viscosity. Fluid Dyn. Res. 12 (1993), 2855-2867.
DOI 10.1016/0169-5983(93)90103-H
[8] Maruthamanikandan, S., Thomas, N. M., Mathew, S.:
Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation. J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages.
DOI 10.1088/1742-6596/1139/1/012024
[11] Rajagopal, R., Shelin, E. J., Sangeetha, K. G.:
A non-linear stability analysis of Rayleigh-Bénard magnetoconvection of a couple stress fluid in the presence of rotational modulation. Int. J. Math. Trends Tech. 54 (2018), 477-484.
DOI 10.14445/22315373/IJMTT-V54P558
[12] Ramachandramurthy, V., Aruna, A. S., Kavitha, N.:
Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages.
DOI 10.1007/s40819-020-0781-1 |
MR 4062157 |
Zbl 07322692
[13] Ramachandramurthy, V., Uma, D., Kavitha, N.: Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source. Int. J. Appl. Eng. Res. 14 (2019), 2126-2123.
[17] Severin, J., Herwig, H.:
Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach. Z. Angew. Math. Phys. 50 (1999), 375-386.
DOI 10.1007/PL00001494 |
MR 1697713 |
Zbl 0926.76045
[18] Siddheshwar, P. G.:
Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g or $\mu$g. Pramana 62 (2004), 61-68.
DOI 10.1007/BF02704425
[20] Siddheshwar, P. G., Ramachandramurthy, V., Uma, D.:
Rayleigh-Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int. J. Eng. Sci. 49 (2011), 1078-1094.
DOI 10.1016/j.ijengsci.2011.05.020 |
Zbl 1423.76504
[21] Siddheshwar, P. G., Siddabasappa, C.:
Linear and weakly nonlinear stability analysis of two-dimensional, steady Brinkman-Bénard convection using local thermal non-equilibrium model. Transp. Porous Media 120 (2017), 605-631.
DOI 10.1007/s11242-017-0943-8 |
MR 3722204
[22] Siddheshwar, P. G., Titus, P. S.:
Nonlinear Rayleigh-Bénard convection with variable heat source. J. Heat Transfer 135 (2013), Article ID 122502, 12 pages.
DOI 10.1115/1.4024943
[23] Somerscales, E. F. C., Dougherty, T. S.:
Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below. J. Fluid Mech. 42 (1970), 755-768.
DOI 10.1017/S0022112070001593
[25] Stokes, V. K.:
Couple stresses in fluids. Theories of Fluids with Microstructure Springer, Berlin (1966), 34-80.
DOI 10.1007/978-3-642-82351-0
[26] Torrance, K. E., Turcotte, D. L.:
Thermal convection with large viscosity variation. J. Fluid Mech. 47 (1971), 113-125.
DOI 10.1017/S002211207100096X
[27] Walicki, E., Walicka, A.:
Inertia effect in the squeeze film of a couple-stress fluid in biological bearings. Appl. Mech. Eng. 4 (1999), 363-373.
Zbl 0971.76108