[1] Arcozzi N., Rochberg R., Sawyer E. T., Wick B. D.:
Potential theory on trees, graphs and Ahlfors-regular metric spaces. Potential Anal. 41 (2014), no. 2, 317–366.
DOI 10.1007/s11118-013-9371-8 |
MR 3232028
[3] Bowen R.:
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, 470, Springer, Berlin, 1975.
DOI 10.1007/BFb0081284 |
MR 0442989
[7] Kesseböhmer M., Kombrink S.:
A complex Ruelle–Perron–Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 2, 335–352.
MR 3600649
[8] Kesseböhmer M., Kombrink S.: Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings. available at arXiv:1702.02854v1 [math.DS] (2017), 30 pages.
[9] Kombrink S.:
Renewal theorems for a class of processes with dependent interarrival times and applications in geometry. available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages.
MR 3881115
[11] Lalley S. P.:
Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math. 163 (1989), no. 1–2, 1–55.
DOI 10.1007/BF02392732 |
MR 1007619
[12] Mattila P.:
Geometry of Sets and Measures in Euclidean Spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995.
MR 1333890 |
Zbl 0911.28005
[14] Stachó L. L.:
On the volume function of parallel sets. Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374.
MR 0442202
[16] Zähle M.:
(S)PDE on fractals and Gaussian noise. in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pages 295–312.
MR 3775469