Previous |  Up |  Next

Article

Keywords:
remotely $c$-almost periodic functions in ${\mathbb{R}}^{n}$; slowly oscillating functions in ${\mathbb{R}}^{n}$; quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
Summary:
In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb{R}}^{n},$ slowly oscillating functions in ${\mathbb{R}}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb{R}}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
References:
[1] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 106 (2019), 1–20. MR 3974664
[2] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells. Math. Methods Appl. Sci. 43 (2020), 305–319. DOI 10.1002/mma.5880 | MR 4044240
[3] Alvarez, E., Gómez, A., Pinto, M.: $(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. DOI 10.14232/ejqtde.2018.1.16 | MR 3789407
[4] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Birkhäuser, Springer Basel AG, 2001. MR 2798103
[5] Besicovitch, A.S.: Almost Periodic Functions. Dover Publ., New York, 1954. MR 0068029
[6] Blot, J., Cieutat, P., N’Guérékata, G.M.: S-asymptotically $\omega $-periodic functions and applications to evolution equations. -asymptotically $\omega $-periodic functions and applications to evolution equations, African Diaspora J. Math. 12 (2011), 113–121. MR 2847308
[7] Brindle, D.: $S$-asymptotically $\omega $-periodic functions and sequences and applications to evolution equations. Ph.D. thesis, Morgan State University, 2019, https://mdsoar.org/handle/11603/17680 MR 4071576
[8] Chang, Y.-K., Wei, Y.: $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces. Acta Math. Sci. 41B (2021), 413–425. DOI 10.1007/s10473-021-0206-1 | MR 4206851
[9] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications. submitted 2020, arXiv:2012.00543.
[10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications. Bull. Braz. Math. Soc. (N.S.) (2022), 1–51, https/doi.org/10.1007/s00574-022-00284-x DOI 10.1007/s00574-022-00284-x | MR 4458789
[11] Cuevas, C., de Souza, J.C.: Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay. Nonlinear Anal. 72 (2010), 1683–1689. DOI 10.1016/j.na.2009.09.007 | MR 2577568
[12] Diagana, T.: Almost automorphic type and almost periodic type functions in abstract spaces. Springer-Verlag, New York, 2013. MR 3098423
[13] Dimbour, W., Manou-Ab, S.M.: Asymptotically $\omega $-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space. Mediterranean J. Math. 15 (1) (2018), 18 pp., https://doi.org/10.1007/s00009-018-1071-61660-5446/18/010001-18 DOI 10.1007/s00009-018-1071-61660-5446/18/010001-18 | MR 3750300
[14] Fink, A.M.: Almost periodic differential equations. Springer-Verlag, Berlin, 1974. MR 0460799
[15] Friedman, A.: Partial differential equations of parabolic type. Prentice Hall, Englewood Cliffs, NJ, 1964, xiv+347 pp. MR 0181836
[16] Garcia, S.R.: Remembering Donald Sarason (1933-2017). Notices Amer. Math. Soc. 65 (2018), 195–200. MR 3751316
[17] Haraux, A., Souplet, P.: An example of uniformly recurrent function which is not almost periodic. J. Fourier Anal. Appl. 10 (2004), 217–220. DOI 10.1007/s00041-004-8012-4 | MR 2054309
[18] Henríquez, H.R., Pierri, M., Táboas, P.: On S-asymptotically $\omega $-periodic functions on Banach spaces and applications. -asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. DOI 10.1016/j.jmaa.2008.02.023 | MR 2417129
[19] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: Generalized $c$-almost periodic functions and applications. Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. MR 4187070
[20] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.: $c$-almost periodic type functions and applications. Nonauton. Dyn. Syst. 7 (2020), 176–193. DOI 10.1515/msds-2020-0111 | MR 4185794
[21] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications. Electron. J. Differential Equations, in press, aXiv:2012.15735. MR 4252727
[22] Kostić, M.: Generalized semigroups and cosine functions. Mathematical Institute SANU, Belgrade, 2011. MR 2790849
[23] Kostić, M.: Almost periodic and almost automorphic type solutions to integro-differential equations. W. de Gruyter, Berlin, 2019. MR 3931753
[24] Kostić, M.: Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$. Arch. Math. (Brno) 57 (2021), 221–253. DOI 10.5817/AM2021-4-221 | MR 4346112
[25] Kostić, M.: Multi-dimensional $(\omega , c)$-periodic type functions and applications. Nonauton. Dyn. Syst. 8 (2021), 136–151. DOI 10.1515/msds-2020-0130 | MR 4252727
[26] Kostić, M.: Quasi-asymptotically almost periodic functions and applications. Bull. Braz. Math. Soc. (N.S.) 52 (2021), 183–212. DOI 10.1007/s00574-020-00197-7 | MR 4253402
[27] Kostić, M.: Almost periodic functions and densities. Evol. Equ. Control Theory 11 (2) (2022), 457–486. DOI 10.3934/eect.2021008 | MR 4376332
[28] Kostić, M.: Selected topics in almost periodicity. W. de Gruyter, Berlin, 2022.
[29] Kovanko, A.S.: Sur la compacié des systémes de fonctions presque-périodiques généralisées de H. Wey. C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276. MR 0012148
[30] Levitan, M.: Almost periodic functions. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953, 396 pp. (in Russian). MR 0060629
[31] Maulén, C., Castillo, S., Kostić, M., Pinto, M.: Remotely almost periodic solutions of ordinary differential equations. J. Math. 2021 (2021), 9 pp., Article ID 9985454, 9 pp., https://doi.org/10.1155/2021/9985454 DOI 10.1155/2021/9985454 | MR 4265296
[32] N’Guérékata, G.M.: Almost automorphic and almost periodic functions in abstract spaces. Kluwer Acad. Publ. Dordrecht, 2001. MR 1880351
[33] Oueama-Guengai, E.R., N’Guérékata, G.M.: On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces. Math. Methods Appl. Sci. 41 (2018), 9116–9122. DOI 10.1002/mma.5062 | MR 3897769
[34] Pankov, A.A.: Bounded and almost periodic solutions of nonlinear operator differential equations. Kluwer Acad. Publ., Dordrecht, 1990. MR 1120781
[35] Rabinovich, V.S., Roch, S.: The essential spectrum of Schrödinger operators on lattices. J. Phys. A 39 (2006), 8377–8394. DOI 10.1088/0305-4470/39/26/007 | MR 2238507
[36] Sarason, D.: Toeplitz operators with piecewise quasicontinuous symbols. Indiana Univ. Math. J. 26 (1977), 817–838. DOI 10.1512/iumj.1977.26.26066 | MR 0463968
[37] Sarason, D.: Remotely almost periodic functions. Contemp. Math. 32 (1984), 237–242. DOI 10.1090/conm/032/769512 | MR 0769512
[38] Sarason, D.: The Banach algebra of slowly oscillating functions. Houston J. Math. 33 (4) (2007), 1161–1182. MR 2350087
[39] Xie, R., Zhang, C.: Space of $\omega $-periodic limit functions and its applications to an abstract Cauchy problem. J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, http://dx.doi.org/10.1155/2015/953540 DOI 10.1155/2015/953540 | MR 3326682
[40] Yang, F., Zhang, C.: Slowly oscillating solutions of a parabolic inverse problem: boundary value problems. Bound. Value Probl. 2010 (2010), 12 pp., Article ID 471491, doi:10.1155/2010/471491. DOI 10.1155/2010/471491 | MR 2753238
[41] Yang, F., Zhang, C.: Remotely almost periodic solutions to parabolic inverse problems. Taiwanese J. Math. 15 (2011), 43–57. DOI 10.11650/twjm/1500406160 | MR 2780270
[42] Zaidman, S.: Almost-periodic functions in abstract spaces. Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985. MR 0790316
[43] Zhang, C., Guo, Y.: Slowly oscillating solutions for differential equations with strictly monotone operator. J. Inequal. Appl. 2007 (2007), 9 pp., Article ID 60239, doi:10.1155/2007/60239. DOI 10.1155/2007/60239 | MR 2304457
[44] Zhang, C., Jiang, L.: Remotely almost periodic solutions of parabolic inverse problems. Nonlinear Anal. 65 (2006), 1613–1623. DOI 10.1016/j.na.2005.10.036 | MR 2248688
[45] Zhang, C., Jiang, L.: Remotely almost periodic solutions to systems of differential equations with piecewise constant argument. Appl. Math. Lett. 21 (2008), 761–768. DOI 10.1016/j.aml.2007.08.007 | MR 2436161
[46] Zhang, S., Piao, D.: Time remotely almost periodic viscosity solutions of Hamilton-Jacobi equations. ISRN Math. Anal. 2011 (2011), 13 pp., Article ID 415358, doi:10.5402/2011/415358. DOI 10.5402/2011/415358 | MR 2772323
Partner of
EuDML logo