Previous |  Up |  Next

Article

Keywords:
finite abelian group; isolated subgroup; sum of element orders
Summary:
We say that a subgroup $H$ is isolated in a group $G$ if for every $x\in G$ we have either $x\in H$ or $\langle x\rangle \cap H=1$. We describe the set of isolated subgroups of a finite abelian group. The technique used is based on an interesting connection between isolated subgroups and the function sum of element orders of a finite group.
References:
[1] Amiri, H., Amiri, S. M. Jafarian, Isaacs, I. M.: Sums of element orders in finite groups. Commun. Algebra 37 (2009), 2978-2980. DOI 10.1080/00927870802502530 | MR 2554185 | Zbl 1183.20022
[2] Busarkin, V. M.: The structure of isolated subgroups in finite groups. Algebra Logika 4 (1965), 33-50 Russian. MR 0179249 | Zbl 0145.02904
[3] Busarkin, V. M.: Groups containing isolated subgroups. Sib. Math. J. 9 (1968), 560-563. DOI 10.1007/BF02199089 | MR 0237628 | Zbl 0192.35301
[4] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92. American Mathematical Society, Providence (2008). DOI 10.1090/gsm/092 | MR 2426855 | Zbl 1169.20001
[5] Isolated subgroup. Encyclopedia of Mathematics. Available at https://encyclopediaofmath.org/wiki/Isolated subgroup.
[6] Janko, Z.: Finite $p$-groups with some isolated subgroups. J. Algebra 465 (2016), 41-61. DOI 10.1016/j.jalgebra.2016.06.032 | MR 3537814 | Zbl 1354.20012
[7] Kurosh, A. G.: The Theory of Groups. Volume I, II. Chelsea Publishing, New York (1960). MR 0109842 | Zbl 0064.25104
[8] Suzuki, M.: Group Theory. I. Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). MR 0648772 | Zbl 0472.20001
[9] Tărnăuceanu, M.: A generalization of a result on the sum of element orders of a finite group. Math. Slovaca 71 (2021), 627-630. DOI 10.1515/ms-2021-0008 | MR 4272885 | Zbl 07438366
[10] Tărnăuceanu, M., Fodor, D. G.: On the sum of element orders of finite Abelian groups. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 60 (2014), 1-7. DOI 10.2478/aicu-2013-0013 | MR 3252452 | Zbl 1299.20059
Partner of
EuDML logo