Previous |  Up |  Next

Article

Keywords:
cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring
Summary:
Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \Bbb {N}_0$ if and only if the $R$-modules ${\rm Ext}^i_R(N,H^j_I(M))$ and ${\rm Tor}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \Bbb {N}_0$.
References:
[1] Abazari, R., Bahmanpour, K.: Cofiniteness of extension functors of cofinite modules. J. Algebra 330 (2011), 507-516. DOI 10.1016/j.jalgebra.2010.11.016 | MR 2774642 | Zbl 1227.13010
[2] Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories. J. Algebra 320 (2008), 1275-1287. DOI 10.1016/j.jalgebra.2008.04.002 | MR 2427643 | Zbl 1153.13014
[3] Bahmanpour, K.: Cohomological dimension, cofiniteness and abelian categories of cofinite modules. J. Algebra 484 (2017), 168-197. DOI 10.1016/j.jalgebra.2017.04.019 | MR 3656717 | Zbl 1451.13060
[4] Bahmanpour, K.: A study of cofiniteness through minimal associated primes. Commun. Algebra 47 (2019), 1327-1347. DOI 10.1080/00927872.2018.1506461 | MR 3938559 | Zbl 1420.13042
[5] Bahmanpour, K.: Cofiniteness over Noetherian complete local rings. Commun. Algebra 47 (2019), 4575-4585. DOI 10.1080/00927872.2018.1549668 | MR 3991037 | Zbl 1422.13018
[6] Bahmanpour, K.: A note on abelian categories of cofinite modules. Commun. Algebra 48 (2020), 254-262. DOI 10.1080/00927872.2019.1640238 | MR 4060028 | Zbl 1444.13026
[7] Bahmanpour, K.: On a question of Hartshorne. Collect. Math. 72 (2021), 527-568. DOI 10.1007/s13348-020-00298-y | MR 4297143 | Zbl 07401997
[8] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra 321 (2009), 1997-2011. DOI 10.1016/j.jalgebra.2008.12.020 | MR 2494753 | Zbl 1168.13016
[9] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian. Proc. Am. Math. Soc. 142 (2014), 1101-1107. DOI 10.1090/S0002-9939-2014-11836-3 | MR 3162233 | Zbl 1286.13017
[10] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[11] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0788.13005
[12] Chiriacescu, G.: Cofiniteness of local cohomology modules over regular local rings. Bull. Lond. Math. Soc. 32 (2000), 1-7. DOI 10.1112/S0024609399006499 | MR 1718769 | Zbl 1018.13009
[13] Delfino, D.: On the cofiniteness of local cohomology modules. Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. DOI 10.1017/S0305004100071929 | MR 1253283 | Zbl 0806.13005
[14] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. DOI 10.1016/S0022-4049(96)00044-8 | MR 1471123 | Zbl 0893.13005
[15] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. DOI 10.1090/S0002-9939-02-06500-0 | MR 1918830 | Zbl 0998.13007
[16] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 (1984), 179-184. DOI 10.1090/S0002-9939-1984-0754698-X | MR 0754698 | Zbl 0522.13008
[17] Faltings, G.: Über lokale Kohomologiegruppen hoher Ordnung. J. Reine Angew. Math. 313 (1980), 43-51 German. DOI 10.1515/crll.1980.313.43 | MR 0552461 | Zbl 0411.13010
[18] Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA2). Advanced Studies in Pure Mathematics (Amsterdam) 2. North-Holland, Amsterdam (1968), French. MR 2171939 | Zbl 0197.47202
[19] Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math. (2) 88 (1968), 403-450. DOI 10.2307/1970720 | MR 0232780 | Zbl 0169.23302
[20] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. DOI 10.1007/BF01404554 | MR 0257096 | Zbl 0196.24301
[21] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. DOI 10.1017/S0305004100070493 | MR 1120477 | Zbl 0749.13007
[22] Huneke, C., Lyubeznik, G.: On the vanishing of local cohomology modules. Invent. Math. 102 (1990), 73-93. DOI 10.1007/BF01233420 | MR 1069240 | Zbl 0717.13011
[23] Kawasaki, K.-I.: Cofiniteness of local cohomology modules for principal ideals. Bull. Lond. Math. Soc. 30 (1998), 241-246. DOI 10.1112/S0024609397004347 | MR 1608094 | Zbl 0930.13013
[24] Kubik, B., Leamer, M. J., Sather-Wagstaff, S.: Homology of artinian and Matlis reflexive modules I. J. Pure Appl. Algebra 215 (2011), 2486-2503. DOI 10.1016/j.jpaa.2011.02.007 | MR 2793952 | Zbl 1232.13008
[25] Marley, T., Vassilev, J. C.: Cofiniteness and associated primes of local cohomology modules. J. Algebra 256 (2002), 180-193. DOI 10.1016/S0021-8693(02)00151-5 | MR 1936885 | Zbl 1042.13010
[26] Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). DOI 10.1017/CBO9781139171762 | MR 0879273 | Zbl 0603.13001
[27] Melkersson, L.: Properties of cofinite modules and applications to local cohomology. Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. DOI 10.1017/S0305004198003041 | MR 1656785 | Zbl 0921.13009
[28] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. DOI 10.1016/j.jalgebra.2004.08.037 | MR 2125457 | Zbl 1093.13012
[29] Naghipour, R., Bahmanpour, K., Gorji, I. Khalili: Cofiniteness of torsion functors of cofinite modules. Colloq. Math. 136 (2014), 221-230. DOI 10.4064/cm136-2-4 | MR 3257565 | Zbl 1306.13012
[30] Pirmohammadi, G., Amoli, K. Ahmadi, Bahmanpour, K.: Some homological properties of ideals with cohomological dimension one. Colloq. Math. 149 (2017), 225-238. DOI 10.4064/cm6939-11-2016 | MR 3697138 | Zbl 1390.13055
[31] Yoshida, K.-I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. DOI 10.1017/S0027763000006371 | MR 1475172 | Zbl 0899.13018
[32] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. Math. Nachr. 64 (1974), 239-252 German. DOI 10.1002/mana.19740640114 | MR 0364223 | Zbl 0297.13015
[33] Zöschinger, H.: Minimax-moduln. J. Algebra 102 (1986), 1-32 German. DOI 10.1016/0021-8693(86)90125-0 | MR 0853228 | Zbl 0593.13012
[34] Zöschinger, H.: Über die Maximalbedingung für radikalvolle Untermoduln. Hokkaido Math. J. 17 (1988), 101-116 German. DOI 10.14492/hokmj/1381517790 | MR 0928469 | Zbl 0653.13011
Partner of
EuDML logo