Keywords: cofinite module; cohomological dimension; ideal transform; local cohomology; Noetherian ring
Summary: Let $I$ be an ideal of a commutative Noetherian ring $R$. It is shown that the $R$-modules $H^j_I(M)$ are $I$-cofinite for all finitely generated $R$-modules $M$ and all $j\in \Bbb {N}_0$ if and only if the $R$-modules ${\rm Ext}^i_R(N,H^j_I(M))$ and ${\rm Tor}^R_i(N,H^j_I(M))$ are $I$-cofinite for all finitely generated $R$-modules $M$, $N$ and all integers $i,j\in \Bbb {N}_0$.
[10] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[29] Naghipour, R., Bahmanpour, K., Gorji, I. Khalili: Cofiniteness of torsion functors of cofinite modules. Colloq. Math. 136 (2014), 221-230. DOI 10.4064/cm136-2-4 | MR 3257565 | Zbl 1306.13012
[30] Pirmohammadi, G., Amoli, K. Ahmadi, Bahmanpour, K.: Some homological properties of ideals with cohomological dimension one. Colloq. Math. 149 (2017), 225-238. DOI 10.4064/cm6939-11-2016 | MR 3697138 | Zbl 1390.13055