Previous |  Up |  Next

Article

Title: Extension of semiclean rings (English)
Author: Bakkari, Chahrazade
Author: Es-Saidi, Mohamed
Author: Mahdou, Najib
Author: Abdou Salam Moutui, Moutu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 2
Year: 2022
Pages: 461-476
Summary lang: English
.
Category: math
.
Summary: This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties. (English)
Keyword: amalgamated algebra
Keyword: nil-clean ring
Keyword: periodic ring
Keyword: pullback
Keyword: UU ring
Keyword: semiclean ring
MSC: 11T06
MSC: 11T30
MSC: 13B02
MSC: 13B05
MSC: 13B10
idZBL: Zbl 07547215
idMR: MR4412770
DOI: 10.21136/CMJ.2021.0538-20
.
Date available: 2022-04-21T19:02:51Z
Last updated: 2024-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150412
.
Reference: [1] Anderson, D. D., Bisht, N.: A generalization of semiclean rings.Commun. Algebra 48 (2020), 2127-2142. Zbl 1440.16043, MR 4085783, 10.1080/00927872.2019.1710177
Reference: [2] Arora, N., Kundu, S.: Semiclean rings and rings of continuous functions.J. Commut. Algebra 6 (2014), 1-16. Zbl 1294.16025, MR 3215558, 10.1216/JCA-2014-6-1-1
Reference: [3] Badawi, A.: On abelian $\pi$-regular rings.Commun. Algebra 25 (1997), 1009-- 1021. Zbl 0881.16003, MR 1437658, 10.1080/00927879708825906
Reference: [4] Badawi, A., Chin, A. Y. M., Chen, H. V.: On rings with near idempotent elements.Int. J. Pure Appl. Math. 1 (2002), 255-261. Zbl 1008.16007, MR 1912681
Reference: [5] Bakkari, C., Es-Saidi, M.: Nil-clean property in amalgamated algebras along an ideal.Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (2019), 15-20. Zbl 1441.13036, MR 3941129, 10.1007/s11565-018-0304-8
Reference: [6] Bell, H. E.: On quasi-periodic rings.Arch. Math. 36 (1981), 502-509. Zbl 0443.16016, MR 1552710, 10.1007/BF01223732
Reference: [7] Chacron, M.: On a theorem of Herstein.Can. J. Math. 21 (1969), 1348-1353. Zbl 0213.04302, MR 0262295, 10.4153/CJM-1969-148-5
Reference: [8] Chhiti, M., Mahdou, N., Tamekkante, M.: Clean property in amalgamated algebras along an ideal.Hacet. J. Math. Stat. 44 (2015), 41-49. Zbl 1320.13020, MR 3363762, 10.15672/HJMS.2015449103
Reference: [9] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. Zbl 1177.13043, MR 2606283, 10.1515/9783110213188.155
Reference: [10] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [11] Han, J., Nicholson, W. K.: Extensions of clean rings.Commun. Algebra 29 (2001), 2589-2595. Zbl 0989.16015, MR 1845131, 10.1081/AGB-100002409
Reference: [12] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element.Math. J. Okayama Univ. 30 (1988), 33-40. Zbl 0665.16016, MR 0976729, 10.18926/mjou/33546
Reference: [13] Huckaba, J. A.: Commutative Rings with Zero-Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741
Reference: [14] Kabbaj, S.-E.: Matlis' semi-regularity and semi-coherence in trivial ring extensions: A survey.(to appear) in Moroccan J. Algebra Geometry Appl.
Reference: [15] Kabbour, M.: Trivial ring extensions and amalgamations of periodic rings.Gulf J. Math. 3 (2015), 12-16. Zbl 1389.13053, MR 3339429
Reference: [16] Mahdou, N., Moutui, M. A. S.: On $(A)$-rings and strongly $(A)$-rings issued from amalgamation.Stud. Sci. Math. Hung. 55 (2018), 270-279. Zbl 1413.13019, MR 3813356, 10.1556/012.2018.55.2.1397
Reference: [17] Mahdou, N., Moutui, M. A. S.: Gaussian and Prüfer conditions in bi-amalgamated algebras.Czech. Math. J. 70 (2020), 381-391. Zbl 7217141, MR 4111849, 10.21136/CMJ.2019.0335-18
Reference: [18] Mahdou, N., Moutui, M. A. S.: Prüfer property in amalgamated algebras along an ideal.Ric. Mat. 69 (2020), 111-120. Zbl 1440.13088, MR 4098175, 10.1007/s11587-019-00451-1
Reference: [19] McGovern, W. W., Raphael, R.: Considering semi-clean rings of continuous functions.Topology Appl. 190 (2015), 99-108. Zbl 1322.46020, MR 3349509, 10.1016/j.topol.2015.05.001
Reference: [20] Nicholson, W. K.: Lifting idempotents and exchange rings.Trans. Am. Math. Soc. 229 (1977), 269-278. Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [21] Ôhori, M.: On strongly $\pi$-regular rings and periodic rings.Math. J. Okayama Univ. 27 (1985), 49-52. Zbl 0598.16019, MR 0833455
Reference: [22] Šter, J.: Corner rings of a clean ring need not be clean.Commun. Algebra 40 (2012), 1595-1604. Zbl 1247.16034, MR 2924469, 10.1080/00927872.2011.551901
Reference: [23] Ye, Y.: Semiclean rings.Commun. Algebra 31 (2003), 5609-5625. Zbl 1043.16015, MR 2005247, 10.1081/AGB-120023977
.

Files

Files Size Format View
CzechMathJ_72-2022-2_10.pdf 277.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo