[1] Balakrishnan, A. V., Taylor, L. W.: Distributed parameter nonlinear damping models for flight structures. Proceedings Damping 89. Report Number: WRDC-TR-89-3116 Volume II p. FDC-1 Flight Dynamics Laboratory, Chicago (1989), 9 pages.
[2] Bass, R. W., Zes, D.: Spillover, nonlinearity and flexible structures. 4th NASA Workshop on Computational Control of Flexible Aerospace Systems NASA Conference Publication 10065. NASA. Langley Research Center, Hampton (1991), 1-14.
[3] Boulaaras, S.:
Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipationand logarithmic source terms. Alexandria Eng. J. 59 (2020), 1059-1071.
DOI 10.1016/j.aej.2019.12.013
[4] Boulaaras, S., Draifia, A., Zennir, K.:
General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity. Math. Methods Appl. Sci. 42 (2019), 4795-4814.
DOI 10.1002/mma.5693 |
MR 3992940 |
Zbl 1428.35037
[6] Boumaza, N., Boulaaras, S.:
General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl. Sci. 41 (2018), 6050-6069.
DOI 10.1002/mma.5117 |
MR 3879228 |
Zbl 1415.35038
[7] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A.:
Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40-60.
DOI 10.1006/jmaa.1998.6057 |
MR 1646453 |
Zbl 0914.35081
[8] Emmrich, E., Thalhammer, M.:
A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization. Nonlinearity 24 (2011), 2523-2546.
DOI 10.1088/0951-7715/24/9/008 |
MR 2819935 |
Zbl 1222.74021
[21] Lee, M. J., Kim, D., Park, J. Y.:
General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions. Bound. Value Probl. 2016 (2016), Article ID 173, 21 pages.
DOI 10.1186/s13661-016-0679-3 |
MR 3550421 |
Zbl 1350.35129
[23] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[24] Long, N. T., Ha, H. H., Ngoc, L. T. P., Triet, N. A.:
Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Commun. Pure Appl. Anal. 19 (2020), 455-492.
DOI 10.3934/cpaa.2020023 |
MR 4025953 |
Zbl 1437.35468
[25] Medeiros, L. A.:
On some nonlinear perturbation of Kirchhoff-Carrier operator. Comput. Appl. Math. 13 (1994), 225-233.
MR 1326759 |
Zbl 0821.35100
[27] Ngoc, L. T. P., Nhan, N. H., Nam, B. D., Long, N. T.:
Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term. Lith. Math. J. 60 (2020), 225-247.
DOI 10.1007/s10986-020-09469-7 |
MR 4110669 |
Zbl 1442.35243
[30] Showalter, R. E.:
Hilbert space methods for partial differential equations. Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994).
MR 1302484 |
Zbl 0991.35001
[32] Tatar, N.-e., Zaraï, A.:
On a Kirchhoff equation with Balakrishnan-Taylor damping and source term. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 615-627.
MR 2884753 |
Zbl 1264.35244
[35] Zaraï, A., Tatar, N.-e.:
Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math., Brno 46 (2010), 157-176.
MR 2735903 |
Zbl 1240.35330