[4] Achache, M., Boudiaf, N.:
Complexity analysis of primal-dual algorithms for the semidefinite linear complementarity problem. Rev. Anal. Numér. Théor. Approx. 40 (2011), 95-106.
MR 3059815 |
Zbl 1274.90371
[8] Alizadeh, F., Haeberly, J.-P. A., Overton, M. L.:
A New Primal-Dual Interior-Point Methods for Semidefinite Programming. Technical Report 659. Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York (1994).
MR 1636549
[14] Klerk, E. de: Interior Point Methods for Semidefinite Programming: Thesis Technische Universiteit Delf. (1997).
[20] Krislock, N. G. B.: Numerical Solution of Semidefinite Constrained Least Squares Problems: A Thesis. University of British Columbia, Vancouver (2003).
[22] Malick, J.: Applications of SDP least-squares in finance and combinatorics. CNRS, Lab. J. Kuntzmann, Grenoble CORE Math. Prog. Seminar-11 March (2008).
[26] Qian, X.: Continuous Methods for Convex Programming and Convex Semidefinite Programming: PhD. Thesis. Hong Kong Baptist University, Hong Kong (2017).