Previous |  Up |  Next

Article

Keywords:
linear system; $M$-matrix; optimal parameter; Taylor approximation; optimization
Summary:
In this paper, we present a new iterative method for solving a linear system, whose coefficient matrix is an $M$-matrix. This method includes four parameters that are obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approximation. First, under some standard assumptions, we establish the convergence properties of the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find the optimal parameters. Meanwhile, numerical results on test examples show the efficiency of the new proposed method in contrast with the Hermitian and skew-Hermitian splitting (HSS), AOR methods and a modified version of the AOR (QAOR) iteration.
References:
[1] Avdelas, G., Hadjidimos, A., Yeyios, A.: Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method. Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 5-10. MR 0617249 | Zbl 0445.65018
[2] Bai, Z., Chi, X.: Asymptotically optimal successive overrelaxation methods for systems of linear equations. J. Comput. Math. 21 (2003), 503-612. MR 1999971 | Zbl 1031.65050
[3] Bai, Z.-Z., Golub, G. H., Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. DOI 10.1137/S0895479801395458 | MR 1972670 | Zbl 1036.65032
[4] Bai, Z.-Z., Golub, G. H., Ng, M. K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14 (2007), 319-335. DOI 10.1002/nla.517 | MR 2310394 | Zbl 1199.65097
[5] Bai, Z.-Z., Golub, G. H., Pan, J.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98 (2004), 1-32. DOI 10.1007/s00211-004-0521-1 | MR 2076052 | Zbl 1056.65025
[6] Beik, F. P. A., Shams, N. N.: Preconditioned generalized mixed-type splitting iterative method for solving weighted least-squares problems. Int. J. Comput. Math. 91 (2014), 944-963. DOI 10.1080/00207160.2013.810215 | MR 3230032 | Zbl 1304.65134
[7] Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration. SIAM. J. Matrix Anal. Appl. 31 (2009), 360-374. DOI 10.1137/080723181 | MR 2530254 | Zbl 1191.65025
[8] Benzi, M., Golub, G. H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26 (2004), 20-41. DOI 10.1137/S0895479802417106 | MR 2112850 | Zbl 1082.65034
[9] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York (1979). DOI 10.1016/c2013-0-10361-3 | MR 0544666 | Zbl 0484.15016
[10] Demmel, J. W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997). DOI 10.1137/1.9781611971446 | MR 1463942 | Zbl 0879.65017
[11] Golub, G. H., Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings. Numer. Algorithms 25 (2000), 223-239. DOI 10.1023/A:1016637813615 | MR 1827156 | Zbl 0983.65041
[12] Guo, P., Wu, S.-L., Li, C.-X.: On the SOR-like iteration method for solving absolute value equations. Appl. Math. Lett. 97 (2019), 107-113. DOI 10.1016/j.aml.2019.03.033 | MR 3957497 | Zbl 1437.65044
[13] Hadjidimos, A.: Accelerated overrelaxation method. Math. Comput. 32 (1978), 149-157. DOI 10.1090/S0025-5718-1978-0483340-6 | MR 0483340 | Zbl 0382.65015
[14] Ke, Y.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. DOI 10.1016/j.aml.2019.07.021 | MR 3989672 | Zbl 07112056
[15] Li, L., Huang, T.-Z., Liu, X.-P.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numer. Linear Algebra Appl. 14 (2007), 217-235. DOI 10.1002/nla.528 | MR 2301913 | Zbl 1199.65109
[16] Meng, G.-Y.: A practical asymptotical optimal SOR method. Appl. Math. Comput. 242 (2014), 707-715. DOI 10.1016/j.amc.2014.06.034 | MR 3239699 | Zbl 1336.65044
[17] Ren, L., Ren, F., Wen, R.: A selected method for the optimal parameters of the AOR iteration. J. Inequal. Appl. 2016 (2016), Article ID 279, 14 pages. DOI 10.1186/s13660-016-1196-8 | MR 3571336 | Zbl 1353.65025
[18] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898718003 | MR 1990645 | Zbl 1031.65046
[19] Salkuyeh, D. K.: The Picard-HSS iteration method for absolute value equations. Optim. Lett. 8 (2014), 2191-2202. DOI 10.1007/s11590-014-0727-9 | MR 3279597 | Zbl 1335.90102
[20] Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962). DOI 10.1007/978-3-642-05156-2 | MR 0158502 | Zbl 0133.08602
[21] Woźnicki, Z. I.: Basic comparison theorems for weak and weaker matrix splitting. Electron. J. Linear Algebra 8 (2001), 53-59. DOI 10.13001/1081-3810.1060 | MR 1836055 | Zbl 0981.65041
[22] Wu, S.-L., Liu, Y.-J.: A new version of the accelerated overrelaxation iterative method. J. Appl. Math. 2014 (2014), Article ID 725360, 6 pages. DOI 10.1155/2014/725360 | MR 3256322 | Zbl 1442.65050
Partner of
EuDML logo